激光与光电子学进展, 2014, 51 (12): 120006, 网络出版: 2014-11-26   

光学相干弹性成像研究现状与展望 下载: 952次

Research Status and Prospect of Optical Coherence Elastography
沈熠辉 1,2,3,*李志芳 1,2,3李晖 1,2,3
作者单位
1 福建师范大学医学光电科学与技术教育部重点实验室, 福建 福州 350007
2 福建师范大学福建省光子技术重点实验室, 福建 福州 350007
3 福建师范大学光电与信息工程学院, 福建 福州 350007
摘要
弹性成像技术是以软组织的杨氏模量、剪切模量、应力与应变等弹性参量为成像对象的技术。伴随着光学相干层析成像(OCT)的发展,光学相干弹性成像(OCE)由于其微米级别的分辨率,实时的图像处理以及非侵入式成像得到人们的青睐。综述了OCE 的分类以及当今主流的几种OCE 技术及其弹性图像重构的问题。探讨了OCE 中施加机械负载方法和位移估算、应变估计的方法。OCE 对检测组织临床上和病理上的机械特性拥有强大的潜力,特别是在诊断癌症,心血管疾病和眼科疾病上。总结了OCE 研究和发展状况,并对其发展前景进行了展望。
Abstract
Elastography is a technique based on Young′s modulus, shear modulus,stain and stress in soft tissue. With the development of optical coherent tomography (OCT), optical coherence elastography (OCE) becomes popular because of its micron meter level resolution, real- time image processing and noninvasive imaging. The classification of OCE, several kinds of dominant OCE and elastography reconstruction are reviewed. The method of applying mechanical load and estimating displacement and strain is discussed. OCE has a great potential in detecting the clinical and pathological mechanical properties, especially in the diagnosis of cancer, cardiovascular disease and eye disease. The research development of OCE is summarized and its prospect is also discussed.
参考文献

[1] 谢波. 准静态三维超声弹性成像方法研究[D]. 华南理工大学, 2013. 12-14.

    Xie Bo. Research of Quasi-static 3D Ultrasound Elastography[D]. South China University of Technology, 2013. 12-14.

[2] 蔡葳蕤. 基于气动激励的磁共振弹性成像技术研究[D]. 长沙: 湖南大学, 2012. 22-25.

    Cai Weirui. A Research on the Technique of Magnetic Resonance Elastography based on Pneumatic Driver[D]. Changsha: Hunan University, 2012. 22-25.

[3] Ophir J, Alam S K, Garra B, et al.. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues [J]. Proceedings of the Institution of Mechanical Engineers, 1999, 213(3): 203-233.

[4] Liang X, Oldenburg A L, Crecea V, et al.. Optical micro-scale mapping of dynamic biomechanical tissue properties[J]. Optics Express, 2008, 16(15): 11052-11065.

[5] Adie S G, Kennedy B F, Armstrong J, et al.. Audio frequency in vivo optical coherence elastography[J]. Physics in Medicine and Biology, 2009, 54(10): 3129-3139.

[6] Kennedy B F, Hillman T R, McLaughlin R A, et al.. In vivo dynamic optical coherence elastography using a ring actuator [J]. Optics Express, 2009, 17(24): 21762-21772.

[7] Li C, Guan G, Cheng X, et al.. Quantitative elastography provided by surface acoustic waves measured by phasesensitive optical coherence tomography[J]. Optics Letters, 2012, 37(4): 722-724.

[8] Scruby C B, Drain L E. Laser ultrasonics techniques and applications[M]. Boca Raton: CRC Press, 1990. 57-59.

[9] Wang H C, Fleming S, Lee Y C, et al.. Laser ultrasonic surface wave dispersion technique for non- destructive evaluation of human dental enamel[J]. Optics Express, 2009, 17(18): 15592-15607.

[10] Schneider D, Schwarz T. A photoacoustic method for characterising thin films[J]. Surface and Coatings Technology, 1997, 91(1): 136-146.

[11] Sohn Y, Krishnaswamy S. Mass spring lattice modeling of the scanning laser source technique[J]. Ultrasonics, 2002, 39(8): 543-551.

[12] Zhu J. Non- contact ndt of concrete structures using air coupled sensors[R]. Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign., 2008.

[13] Li C, Guan G, Cheng X, et al.. Quantitative elastography provided by surface acoustic waves measured by phasesensitive optical coherence tomography[J]. Optics Letters, 2012, 37(4): 722-724.

[14] Li C, Guan G, Huang Z, et al.. Noncontact all-optical measurement of corneal elasticity[J]. Optics Letters, 2012, 37(10): 1625-1627.

[15] Wang S, Larin K V, Li J, et al.. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity[J]. Laser Physics Letters, 2013, 10(7): 075605.

[16] Song S, Huang Z, Wang R K. Tracking mechanical wave propagation within tissue using phase- sensitive optical coherence tomography: motion artifact and its compensation[J]. Journal of Biomedical Optics, 2013, 18(12): 121505.

[17] Song S, Huang Z, Nguyen T M, et al.. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 2013, 18(12): 121509.

[18] Qi W, Chen R, Chou L, et al.. Phase- resolved acoustic radiation force optical coherence elastography[J]. Journal of Biomedical Optics, 2012, 17(11): 110505.

[19] Kennedy B F, Liang X, Adie S G, et al.. In vivo three- dimensional optical coherence elastography[J]. Optics Express, 2011, 19(7): 6623-6634.

[20] Liang X, Oldenburg A L, Crecea V, et al.. Optical micro- scale mapping of dynamic biomechanical tissue properties[J]. Optics express, 2008, 16(15): 11052-11065.

[21] Kennedy B F, Wojtkowski M, Szkulmowski M, et al.. Improved measurement of vibration amplitude in dynamic optical coherence elastography[J]. Biomedical Optics Express, 2012, 3(12): 3138-3152.

[22] Liang X, Adie S G, John R, et al.. Dynamic spectral-domain optical coherence elastography for tissue characterization [J]. Optics Express, 2010, 18(13): 14183-14190.

[23] Kennedy B F, Koh S H, McLaughlin R A, et al.. Strain estimation in phase-sensitive optical coherence elastography[J]. Biomedical Optics Express, 2012, 3(8): 1865-1879.

[24] Crecea V, Oldenburg A L, Liang X, et al.. Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials[J]. Optics Express, 2009, 17(25): 23114-23122.

[25] Oldenburg A, Toublan F, Suslick K, et al.. Magnetomotive contrast for in vivo optical coherence tomography[J]. Optics Express, 2005, 13(17): 6597-6614.

[26] Kennedy B F, Kennedy K M, Sampson D D. A review of optical coherence elastography: fundamentals, techniques and prospects[J]. IEEE J Sel Top Quantum Electron, 2014, 20(2): 7101217.

[27] Li C, Guan G, Cheng X, et al.. Quantitative elastography provided by surface acoustic waves measured by phasesensitive optical coherence tomography[J]. Optics Letters, 2012, 37(4): 722-724.

[28] Doyley M M. Model- based elastography: a survey of approaches to the inverse elasticity problem[J]. Physics in medicine and biology, 2012, 57(3): R35-R73.

[29] S C Cowin, and S. B. Doty. Tissue Mechanics[M]. New York: Springer, 2007. 113-116.

[30] S J Kirkpatrick, D D Duncan. Optical assessment of tissue mechanics[M]// V V Tuchin. handbook of optical biomedical diagnostics. Bellingham: SPIE Press, 2002, 2(7): 1037-108.

[31] Ophir J, Alam S K, Garra B, et al.. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999, 213(3): 203-233.

[32] Greenleaf J F, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues[J]. Annual review of biomedical engineering, 2003, 5(1): 57-78.

[33] Parker K J, Doyley M M, Rubens D J. Imaging the elastic properties of tissue: the 20 year perspective[J]. Physics in medicine and biology, 2012, 57(16): 5359-5360.

[34] Parker K J, Taylor L S, Gracewski S, et al.. A unified view of imaging the elastic properties of tissue[J]. The Journal of the Acoustical Society of America, 2005, 117(5): 2705-2712.

[35] T A Krouskop, T M Wheeler, F Kallel, et al.. Elastic moduli of breast and prostate tissues under compression[J]. Ultrasonic Imaging, 1998, 20(4): 260-274.

[36] B F Kennedy, S H Koh, R A McLaughlin, et al.. Strain estimation in phase-sensitive optical coherence elastography[J]. Biomedical Optics Express, 2012, 3(8): 1865-1879.

[37] Zaitsev V Y, Matveev L A, Matveyev A L, et al.. Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability[J]. Journal of Biomedical Optics, 2014, 19(2): 021107.

[38] Sun C, Vuong C, Wen X, et al.. Preliminary study of digital image correlation based optical coherence elastography[C]. SPIE, 2013, 8802: 880207.

[39] Parker K J, Taylor L S, Gracewski S, et al.. A unified view of imaging the elastic properties of tissue[J]. The Journal of the Acoustical Society of America, 2005, 117(5): 2705-2712.

[40] Szkulmowski M, Szkulmowska A, Bajraszewski T, et al.. Flow velocity estimation using joint spectral and time domain optical coherence tomography[J]. Optics Express, 2008, 16(9): 6008-6025.

[41] 丁志华, 赵晨, 鲍文, 等. 多普勒光学相干层析成像研究进展[J]. 激光与光电子学进展, 2013, 50(8): 080005.

    Ding Zhihua, Zhao Chen, Bao Wen, et al.. Advances in doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080005.

[42] Kallel F, Ophir J. A least-squares strain estimator for elastography[J]. Ultrasonic imaging, 1997, 19(3): 195-208.

[43] Zhang X, Greenleaf J F. Estimation of tissue′ s elasticity with surface wave speed[J]. The Journal of the Acoustical Society of America, 2007, 122(5): 2522-2525.

[44] 王驰, 毕书博, 丁卫, 等. 梯度折射率光纤探针的光学特征参数[J].中国激光,2012,39(9): 0905001.

    Wang Chi, Bi Shubo, Ding Wei,et al.. Optical characteristic parameters of gradient- index fiber probe[J]. Chinese J Lasers, 2012, 39(9): 0905001.

[45] 崇博, 朱永凯. 谱域光学相干层析系统轴向分辨率提高方法[J]. 光学学报, 2012, 33(2): 0217001.

    Chong Bo, Zhu Yongkai. Method to improve axial resolution of spectral domain optical coherence tomography[J]. Acta Optica Sinica, 2012, 33(2): 0217001.

沈熠辉, 李志芳, 李晖. 光学相干弹性成像研究现状与展望[J]. 激光与光电子学进展, 2014, 51(12): 120006. Shen Yihui, Li Zhifang, Li Hui. Research Status and Prospect of Optical Coherence Elastography[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!