Photonics Research, 2018, 6 (5): 05000B30, Published Online: Apr. 11, 2019  

Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited]

Author Affiliations
1 Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2 ARC Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, VIC 3001, Australia
3 Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
5 INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
6 National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
7 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Copy Citation Text

Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Tania Moein, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited][J]. Photonics Research, 2018, 6(5): 05000B30.

References

[1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 2007, 1: 319-330.

[2] M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, D. J. Moss. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt. Express, 2014, 22: 21488-21498.

[3] B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, B. J. Eggleton. Silicon nanowire based radio-frequency spectrum analyzer. Opt. Express, 2010, 18: 20190-20200.

[4] M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, B. J. Eggleton. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat. Photonics, 2009, 3: 139-143.

[5] A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt. Express, 2012, 20: 27355-27362.

[6] J. P. Yao. Microwave photonics. J. Lightwave Technol., 2009, 27: 314-335.

[7] R. C. Williamson, R. D. Esman. RF photonics. J. Lightwave Technol., 2008, 26: 1145-1153.

[8] A. J. Seeds. Microwave photonics. IEEE Trans. Microwave Theory, 2002, 50: 877-887.

[9] K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, J. T. Lin. Microwave photonics: radio-over-fiber links, systems, and applications. Photon. Res., 2014, 2: B54-B63.

[10] R. A. Minasian. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J. Quantum Electron., 2016, 52: 0600813.

[11] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 2006, 24: 201-229.

[12] T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express, 2015, 23: 22087-22097.

[13] WuJ.XuX.NguyenT. G.ChuS. T.LittleB. E.MitchellA.MorandottiR.MossD. J., “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

[14] A. Malacarne, R. Ashrafi, Y. Park, J. Azana. Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing. Opt. Lett., 2011, 36: 4290-4292.

[15] Y. Park, M. H. Asghari, R. Helsten, J. Azana. Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor. IEEE Photon. J., 2010, 2: 1040-1050.

[16] J. Azana, C. Madsen, K. Takiguchi, G. Cincotti. Guest editorial—optical signal processing. J. Lightwave Technol., 2006, 24: 2484-2486.

[17] S. Mansoori, A. Mitchell. RF transversal filter using an AOTF. IEEE Photon. Technol. Lett., 2004, 16: 879-881.

[18] X. Q. Zhu, F. Y. Chen, H. F. Peng, Z. Y. Chen. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt. Express, 2017, 25: 9232-9243.

[19] A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, D. Pastor. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt. Lett., 2006, 31: 709-711.

[20] X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, A. M. Weiner. Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring. J. Lightwave Technol., 2014, 32: 3557-3565.

[21] E. Hamidi, D. E. Leaird, A. M. Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microwave Theory, 2010, 58: 3269-3278.

[22] X. W. Ye, F. Z. Zhang, S. L. Pan. Optical true time delay unit for multi-beamforming. Opt. Express, 2015, 23: 10002-10008.

[23] D. H. Yang, W. P. Lin. Phased-array beam steering using optical true time delay technique. Opt. Commun., 2015, 350: 90-96.

[24] Y. Q. Liu, J. P. Yao, J. L. Yang. Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism. Opt. Commun., 2002, 207: 177-187.

[25] J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, L. Dong. Chirped fibre Bragg gratings for phased-array antennas. Electron. Lett., 1997, 33: 545-546.

[26] S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, D. Dolfi. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Opt. Express, 2010, 18: 22599-22613.

[27] K. Y. Song, M. G. Herraez, L. Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express, 2005, 13: 82-88.

[28] P. A. Morton, J. B. Khurgin. Microwave photonic delay line with separate tuning of the optical carrier. IEEE Photon. Technol. Lett., 2009, 21: 1686-1688.

[29] O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, A. Willner. True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals. Opt. Express, 2012, 20: 8219-8227.

[30] J. Mork, R. Kjaer, M. van der Poel, K. Yvind. Slow light in a semiconductor waveguide at gigahertz frequencies. Opt. Express, 2005, 13: 8136-8145.

[31] H. Su, P. Kondratko, S. L. Chuang. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Opt. Express, 2006, 14: 4800-4807.

[32] J. J. Zhang, J. P. Yao. Photonic true-time delay beamforming using a switch-controlled wavelength-dependent recirculating loop. J. Lightwave Technol., 2016, 34: 3923-3929.

[33] L. H. Zhang, M. Li, N. N. Shi, X. Y. Zhu, S. Q. Sun, J. Tang, W. Li, N. H. Zhu. Photonic true time delay beamforming technique with ultra-fast beam scanning. Opt. Express, 2017, 25: 14524-14532.

[34] Y. Q. Liu, J. L. Yang, J. P. Yao. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photon. Technol. Lett., 2002, 14: 1172-1174.

[35] R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, A. M. Weiner. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett., 2010, 35: 3234-3236.

[36] J. Dai, X. Y. Xu, Z. L. Wu, Y. T. Dai, F. F. Yin, Y. Zhou, J. Q. Li, K. Xu. Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators. Opt. Express, 2015, 23: 30014-30019.

[37] C. H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, S. L. Pan. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt. Lett., 2013, 38: 3137-3139.

[38] R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express, 2013, 21: 6045-6052.

[39] A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner. High-power broadly tunable electro-optic frequency comb generator. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 231-236.

[40] W. Z. Li, J. P. Yao. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt. Express, 2009, 17: 23712-23718.

[41] T. Saitoh, M. Kourogi, M. Ohtsu. A waveguide-type optical-frequency comb generator. IEEE Photon. Technol. Lett., 1995, 7: 197-199.

[42] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 2010, 4: 41-45.

[43] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7: 597-607.

[44] A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, A. M. Weiner. Micro-combs: a novel generation of optical sources. Phys. Rep., 2018, 729: 1-81.

[45] M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, D. J. Moss. Sub-picosecond optical pulse compression via an integrated nonlinear chirper. Opt. Express, 2010, 18: 7625-7633.

[46] D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, D. J. Moss. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express, 2010, 18: 923-930.

[47] A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, D. J. Moss. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt. Express, 2010, 18: 7634-7641.

[48] X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Microwave photonic all-optical differentiator based on an integrated frequency comb source. APL Photon., 2017, 2: 096104.

[49] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express, 2018, 26: 2569-2583.

[50] J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, D. J. Moss. Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity. APL Photon., 2017, 2: 056103.

[51] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 2015, 6: 7957.

[52] A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, A. L. Gaeta. Chip-based frequency combs with sub-100  GHz repetition rates. Opt. Lett., 2012, 37: 875-877.

[53] W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, W. Zhao. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 2016, 6: 28501.

[54] A. Strain, M. Sorel. Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control. IEEE J. Quantum Electron., 2010, 46: 774-782.

[55] E. Sahin, K. J. A. Ooi, C. E. Png, D. T. H. Tan. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl. Phys. Lett., 2017, 110: 161113.

[56] B. Stern, X. C. Ji, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 2017, 42: 4541-4544.

[57] LongbrakeM., “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246249.

[58] SkolnikM. I., Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

[59] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 2012, 6: 480-487.

[60] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 2013, 87: 053852.

[61] S. Coen, H. G. Randle, T. Sylvestre, M. Erkintalo. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett., 2013, 38: 37-39.

[62] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, S. B. Papp. Soliton crystals in Kerr resonators. Nat. Photonics, 2017, 11: 671-676.

[63] X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 2015, 9: 594-600.

Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Tania Moein, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited][J]. Photonics Research, 2018, 6(5): 05000B30.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!