Photonics Research, 2018, 6 (5): 05000B30, Published Online: Apr. 11, 2019  

Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited]

Author Affiliations
1 Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2 ARC Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, VIC 3001, Australia
3 Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
5 INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
6 National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
7 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Figures & Tables

Fig. 1. Scheme of the proposed TTDL based on an integrated optical comb source. TLS, tunable laser source; EDFA, erbium-doped fiber amplifier; BPF, optical bandpass filter; PC, polarization controller; TCS, temperature controller stage; MZM, Mach–Zehnder modulator; SMF, single-mode fiber; WDM, wavelength division multiplexer; PD, photodetector.

下载图片 查看原文

Fig. 2. (a) Schematic illustration of the MRR. Drop-port transmission spectra of the on-chip MRR (b) with a span of 20 nm, showing an FSR of 0.4  nm, and (c) with a resonance at 1550  nm with full width at half-maximum (FWHM) of 1.2  pm (150  MHz). (d) Measured and fitted FSR of the MRR. Optical spectra of the generated Kerr comb with a span of (e) 100 nm and (f) 50 nm.

下载图片 查看原文

Fig. 3. (a) Measured RF phase response of the 81-channel TTDL and (b) corresponding time delays of each channel. The inset shows flat delays over a wide RF range together with the extracted delay errors. (c) Calculated array factors both with and without delay errors. (d) Calculated array factors with generated weights and with uniform weights. (e) Calculated array factors with M varying from 4 to 81. (f) Relationship between the number of radiating elements (M) and the 3 dB beamwidth (θ3dB).

下载图片 查看原文

Fig. 4. (a) Calculated AFs of the PAA with m varying from 1 to 15 (M=6) based on the 49 GHz FSR Kerr comb. (b) Calculated AFs of the PAA with m varying from 1 to 7 based on a 200 GHz FSR Kerr comb [49]. (c) Calculated AFs of the PAA with m varying from 1 to 27 based on the 49 GHz FSR Kerr comb. (d) Number of radiating elements (M) and the 3 dB beamwidth (θ3dB) as a function of m. (e) Beam steering angle θ0 as a function of m. (f) Calculated AFs with RF varying from 2 to 17 GHz.

下载图片 查看原文

Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Tania Moein, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic microwave true time delays for phased array antennas using a 49  GHz FSR integrated optical micro-comb source [Invited][J]. Photonics Research, 2018, 6(5): 05000B30.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!