激光与光电子学进展, 2015, 52 (8): 081408, 网络出版: 2015-08-10  

激光熔覆层端部形貌三维重构模型

A Model of Constructing the End of Single-Track Laser Cladding Layer
作者单位
西北工业大学凝固技术国家重点实验室, 陕西 西安 710072
摘要
激光熔覆层端部形貌对于激光立体成形加工精度及稳定性具有重要影响。基于粉末累积原理,分析了激光熔覆层端部的形成过程。构建了描述激光熔覆层端部三维形貌的分析模型。实验制备了单道激光熔覆层,应用激光共聚焦显微镜观察了激光熔覆层始末端部的形貌特征,并测量了不同横/纵截面的轮廓。结果表明,激光熔覆层端部沿扫描方向由外向内宽度/高度逐渐增加,经过约半个熔池的距离后,宽度达到熔覆层宽度保持不变,初始/末尾熔池外的区域高度达到稳态保持不变,而内部区域继续增加,两区域形成交界线。越过初始/末尾熔池后,熔覆层横截面达到稳态。模型与实验结果在主要几何特征上相符的很好,表明粉末积累是决定熔覆层端部形貌的基本机制,所构模型为认识理解激光熔覆层端部形貌提供了基础。
Abstract
The morphology of ends of single-track laser cladding layer has an important influence on the processing precision and stability in laser solid forming. Based on the principle of powder accumulation, the formation process of ends of single-track laser cladding layer is analyzed. An analytical model of constructing the ends is developed. Some single-track laser cladding layers are prepared. By laser scanning confocal microscope, the ends of single-track laser cladding layers are observed. And the profiles of a series of cross section along the scanning direction and longitudinal section are measured. The result indicates that the width/height of the ends increase inward along the scanning direction. Beyond the distance of the radius of molten pool, the width of the ends equal to the one of the cladding layer and keep stable. Moreover, the height of the zone out of the initial/tail molten pool reaches stable while the one in the initial/tail molten pool keeps increasing. Between those two zones, a boundary of broken line is formed. Beyond the distance of the length of molten pool, the cross section of laser cladding layer reaches stable. The constructed result shows good agreement with the experimental one in the main geometry characteristics, which indicates the powder accumulation is the primary mechanism in determining the morphology of ends of single-track laser cladding layer. The developed model provides a foundation to get insight into the morphology of ends of singletrack laser cladding layer.
参考文献

[1] 黄卫东, 林鑫, 陈静, 等. 激光立体成形—高性能致密金属零件的快速自由成形[M]. 西安: 西北工业大学出版社, 2007: 1-60.

    Huang Weidong, Lin Xin, Chen Jing, et al.. Laser Solid Forming[M]. Xi′ an: Northwestern Polytechnical University Press, 2007: 1-60.

[2] 黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12-27.

    Huang Weidong, Lin Xin. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010, 29(6): 12-27.

[3] Liu F C, Lin X, Yang G L, et al.. Microstructure and residual stress of laser rapid formed inconel 718 nickel-base superalloy[J]. Optics & Laser Technology, 2011, 43(1): 208-213.

[4] 马良, 林鑫, 谭华, 等. 基于样式表达的激光立体成形路径优化[J]. 激光与光电子学进展, 2013, 50(3): 031405.

    Ma Liang, Lin Xin, Tan Hua, et al.. Scanning path optimization of laser solid forming based on style[J]. Laser & Optoelectronics Progress, 2013, 50(3): 031405.

[5] Yang G L, Lin X, Liu F C, et al.. Laser solid forming Zr-based bulk metallic glass[J]. Intermetallics, 2012, 22: 110-115.

[6] Lin X, Cao Y Q, Wu X Y, et al.. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel[J]. Materials Science and Engineering A, 2012, 553: 80-88.

[7] Liu Y H, Chen J, Zhang Q, et al.. Microstructure characteristics of laser forming repaired Ti60 alloy[J]. Chin Opt Lett, 2011, 9(7): 071402.

[8] 薛蕾, 陈静, 虞文军, 等. Ti-6Al-4V 合金激光立体成形沉积态的平面应变断裂韧度[J]. 中国激光, 2009, 36(12): 3210-3214.

    Xue Lei, Chen Jing, Yu Wenjun, et al.. Investigation on KIC of as-deposited Ti-6Al-4V alloy fabricated by laser solid forming[J]. Chinese J Lasers, 2009, 36(12): 3210-3214.

[9] Vrancken B, Thijs L, Kruth J P, et al.. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Materialia, 2014, 68(15): 150-158.

[10] Gu D D, Meiners W, Wissenbach K, et al.. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.

[11] 宋梦华, 林鑫, 刘丰刚, 等. 激光立体成形零件竖直外侧壁向内倾斜的形成及模型[J]. 金属学报, 2015, 51(6): 753-761.

    Song Menghua, Lin Xin, Liu Fenggang, et al.. Formation and modeling of the vertical outside wall of components inclining inward in laser solid forming[J]. Acta Metallurgica Sinica, 2015, 51(6): 753-761.

[12] Li Y M, Yang H, Lin X, et al.. The influences of processing parameters on forming characterizations during laser rapid forming[J]. Materials Science and Engineering A, 2003, 360(1-2): 18-25.

[13] De O U, Ocelik V, De H J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface & Coatings Technology, 2005, 197(2-3): 127-136.

[14] Onwubolu G C, Davim J P, Oliveira C, et al.. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J]. Optics & Laser Technology, 2007, 39(6): 1130-1134.

[15] Yu J, Lin X, Wang J J, et al.. Mechanics and energy analysis on molten pool spreading during laser solid forming[J]. Applied Surface Science, 2010, 256(14): 4612-4620.

[16] Liu J C, Li L J. Study on cross-section clad profile in coaxial single-pass cladding with a low-power laser [J]. Optics & Laser Technology, 2005, 37(6): 478-482.

[17] Liu J C. Formation of cross-sectional profile of a clad bead in coaxial laser cladding[J]. Optics & Laser Technology, 2007, 39(8): 1532-1536.

[18] Bi G J, Gasser A, Wissenbach K, et al.. Characterization of the process control for the direct laser metallic powder deposition[J]. Surface & Coatings Technology, 2006, 201(6): 2676-2683.

[19] Tan H, Chen J, Zhang F Y, et al.. Process analysis for laser solid forming of thin-wall structure[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1): 1-8.

[20] Song M H, Lin X, Yang G L, et al.. Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. Journal of Materials Processing Technology, 2014, 214(3): 701-709.

[21] Lin J M. Concentration mode of the powder stream in coaxial laser cladding[J]. Optics & Laser Technology, 1999, 31(3): 251-257.

[22] Pinkerton A J, Li L. Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 33-41.

宋梦华, 林鑫, 杨海欧, 黄卫东. 激光熔覆层端部形貌三维重构模型[J]. 激光与光电子学进展, 2015, 52(8): 081408. Song Menghua, Lin Xin, Yang Hai′ou, Huang Weidong. A Model of Constructing the End of Single-Track Laser Cladding Layer[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081408.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!