光学 精密工程, 2020, 28 (8): 1678, 网络出版: 2020-11-02   

临近空间风温遥感干涉仪设计及正演

Instrument design and forward modeling of near-space wind and temperature sensing interferometer
作者单位
1 武汉科技大学 城市学院, 湖北 武汉 430083
2 中国科学院 武汉物理与数学研究所, 湖北 武汉 430071
3 中国科学院 西安光学精密机械研究所, 陕西 西安 710119
4 中国科学院 国家空间科学中心, 北京 100190
摘要
临近空间(20~100 km)风温探测对于大气物理和空间科学的发展具有重要的学术意义和应用价值。以1.27 μm附近的O2(a1Δg)气辉为辐射源, 采用广角迈克尔逊干涉仪进行临边观测, 能够实现平流层、中间层及低热层区域(40~80 km)大气风场和温度场的同时探测。本文设计了临近空间风温遥感干涉仪, 并对该仪器进行了仪器建模及正演仿真。根据气辉临边辐射光谱特性及谱线选取的原则, 提出了采用两组强度不同的谱线进行风温遥感, 弱线用于低空探测, 以避免自吸收效应对测量结果的影响; 强线用于高空探测, 以期实现高的测量精度。建立了由大气辐射传输模块, 迈克尔逊干涉仪模块, 滤波器模块, 以及光学系统、传感器阵列、红外焦平面等设备的系统参数组成的正演模型。通过正演模型获得了临边观测图像, 并对风速及温度的测量不确定度进行了计算。数值模拟结果表明, 在40~80 km的高度内, 风测量精度为1~3 m/s, 温度测量精度为1~3 K, 满足临近空间风温探测精度的要求。
Abstract
Wind and temperature measurements in near-space (20-100 km) play a prominent part in the development of atmospheric physics and space science, which are of considerable academic and application value. The atmospheric wind and temperature fields in the stratosphere, mesosphere, and lower thermosphere (40-80 km) can be simultaneously detected using the wide-angle Michelson interferometer with the radiation source observation of the limb-viewing O2(a1Δg) airglow near 1.27 μm. Hence, a near-space wind and temperature sensing interferometer was designed in this study, and its modeling and forward simulation were conducted. Based on the characteristics of the radiation spectrum and principle of spectral line selection, two sets of different intensity lines were employed for wind and temperature detection.The weak group was used for low altitude measurement to avoid the influence of self absorption on the measurement results; the strong line was used for high altitude detection to achieve high measurement accuracy. The forward model was composed of the system parameters of atmosphere radiation transmission module, Michelson interferometer module, filter module, optical system, sensor array, and infrared focal plane. Through forward modeling, the limb-viewing image was obtained, and the uncertainty of wind velocity and temperature measurement was analyzed. The numerical simulation results show that the wind measurement accuracy is 1-3 m/s and temperature measurement accuracy is 1-3 K in the height range of 40-80 km, which meet the requirements of wind temperature detection accuracy in adjacent space.
参考文献

[1] 荆楠, 李创, 钟培峰, 等. 光度数据反演临近空间低速点目标形状尺寸信息[J]. 光学 精密工程, 2017, 25(7): 1738-1747.

    JING N, LI CH, ZHONG P F, et al.. Inversion of low dynamic vehicle shape and dimension information using non-resolved photometric data in near space[J]. Opt. Precision Eng., 2017, 25(7): 1738-1747.(in Chinese)

[2] 陆其峰,周方,漆成莉,等. FY-3D星红外高光谱大气探测仪(HIRAS)在轨光谱精度评估[J]. 光学 精密工程, 2019, 27(10): 2105-2115.

    LU Q F, ZHOU F, QI CH L, et al.. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D[J]. Opt. Precision Eng., 2019, 27(10): 2105-2115. (in Chinese)

[3] 李娜, 陈金松, 丁宗华, 等. 临近空间大气扰动风场的探测与分析[J]. 装备环境工程, 2017, 14(7): 35-40.

    LI N, CHEN J S, DING Z H, et al.. Wind-oscillation measurement and study in near space[J]. Equipment Environmental Engineering, 2017, 14(7): 35-40.(in Chinese)

[4] 向磊, 陈纯毅, 姚海峰, 等. 双向大气湍流光信道瞬时衰落相关特性测量[J]. 中国光学, 2019, 12(5): 1100-1108.

    XIANG L, CHEN CH Y, YAO H F, et al.. Measurement of instantaneous-fading correlation in bidirectional optical channels through atmospheric turbulence[J]. Chinese Optics, 2019, 12(5): 1100-1108. (in Chinese)

[5] 张轶尧, 盛峥, 石汉青, 等. 基于中国岢岚地区法布里-珀罗干涉仪的风场及行星波观测特征[J]. 空间科学学报, 2018, 38(4): 482-491.

    ZHANG Y Y, SHENG ZH, SHI H Q, et al.. Characteristics of wind and planetary waves based on FPI over Kelan of China [J]. Chinese Journal of Space Science, 2018, 38(4): 482-491. (in Chinese)

[6] STOBER G, CHAU J L, VIERINEN J, et al.. Retrieving horizontally resolved wind fields using multi-static meteor radar observations[J]. Atmospheric Measurement Techniques, 2018, 11(8): 4891-4907.

[7] 刘盼, 张天舒, 范广强, 等. 气体受激拉曼散射系统的分析与优化[J]. 光学 精密工程, 2019, 27(12): 2509-2516.

    LIU P, HANG T SH, FAN G Q, et al.. Analysis and optimization of gas stimulated Raman scattering system[J]. Opt. Precision Eng., 2019, 27(12): 2509-2516. (in Chinese)

[8] 陈星, 李贞, 庄子波, 等. 测风激光雷达修正F因子的小尺度风切变检测算法[J]. 光学 精密工程, 2018, 26(4): 927-935.

    CHEN X, LI ZH, ZHUANG Z B, et al.. A small scale wind shear detection algorithm of modified F-factor for wind-profiling lidar[J]. Opt. Precision Eng., 2018, 26(4): 927-935.(in Chinese)

[9] 漆成莉, 周方, 吴春强, 等. 风云三号红外高光谱探测仪的光谱定标[J]. 光学 精密工程, 2019, 27(4): 747-755.

    QI CH L, ZHOU F, WU CH Q, et al.. Spectral calibration of Fengyun-3 satellite high-spectral resolution infrared sounder[J]. Opt. Precision Eng., 2019, 27(4): 747-755.(in Chinese)

[10] 冯玉涛,李娟,赵增亮,等.大气风场探测星载干涉光谱技术进展综述[J]. 上海航天, 2017,34(3): 14-26.

    FENG Y T, LI J, ZHAO Z L, et al.. Development of interferometric spectroscopy for atmosphere wind observations based on satellite [J]. Aerospace Shanghai, 2017, 34(3): 14-26. (in Chinese)

[11] SHEPHERD G G, THUILLIER G, CHO Y M, et al.. The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: a 20 year perspective[J]. Reviews of Geophysics, 2012, 50(2): RG2007.

[12] HAYS P B, ABREU V J, DOBBS M E, et al.. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite[J]. Journal of Geophysical Research, 1993, 98: 10713-10723.

[13] ORTLAND D, HAYS P B, SKINNER W R, et al.. Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high-resolution Doppler imager[J]. Journal of Geophysical Research, 1998, 103: 1821-1835.

[14] SHEPHERD G G, MCDADE I C, GAULT W A, et al.. The stratospheric wind interferometer for transport studies (swift)[J]. Advances in Space Research, 2001, 27(6/7): 1071-1079.

[15] SOLHEIM B, BROWN S, SIORIS C, et al.. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 2015, 53(1): 50-57.

[16] GORDLEY L L, MARSHALL B T. Doppler wind and temperature sounder: new approach using gas filter radiometry[J]. Journal of Applied Remote Sensing, 2011, 5(1): 053570.

[17] 武魁军, 何微微, 于光保, 等. 分子滤光红外成像技术及其在光电探测中的应用 (特邀) [J]. 红外与激光工程, 2019, 48(4): 402003.

    WU K J, HE W W, YU G B, et al.. Molecular filter infrared imaging technology and its application in photoelectric detection (invited) [J]. Infrared and Laser Engineering, 2019, 48(4): 402003. (in Chinese)

[18] TURNER D S, ROCHON Y J. On the feasibility of a fast forward model for Doppler interferometry in the infrared[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(663): 483-499.

[19] RAHNAMA P, GAULT W A, MCDADE I C, et al.. Scientific assessment of the SWIFT instrument design[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(9): 2081-2094.

[20] WARD W E, GAULT W A, SHEPHERD G G, et al.. Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents[C].International Symposium on Remote Sensing. Proc SPIE 4540, Sensors, Systems, and Next-Generation Satellites V, Toulouse, France, 2001, 4540: 100-111.

[21] WU K J, FU D, FENG Y T, et al.. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 127 μm for wind observations from limb-viewing satellites[J]. Optics Express, 2018, 26(13): 16984.

[22] HE W W, WU K J, FENG Y T, et al.. The near-space wind and temperature sensing interferometer: forward model and measurement simulation[J]. Remote Sensing, 2019, 11(8): 914.

[23] 何微微, 武魁军, 王姝娜, 等. 1.27 μm 气辉的星载成像干涉仪风温探测技术[J]. 光学与光电技术, 2019, 17(2): 72-78.

    HE W W, WU K J, WANG SH N, et al.. Observation technology of wind and temperature by onboard imaging interferometer with 1.27 μm air glow[J]. Infrared and Laser Engineering, 2019, 17(2): 72-78. (in Chinese)

[24] WU K J, HE W W, FENG Y T, et al.. Effect of OH radiance on the temperature and wind measurements derived from limb viewing observations of the 1.27 μm O2 dayglow [J]. Atmospheric Measurement Technique Discussions, 2020, 13: 1817-1824.

[25] 何微微,武魁军,冯玉涛,等. O3辐射源 Michelson 测风成像干涉仪临边观测正演仿真[J]. 光学学报, 2019,39(5): 0512005.

    HE W W, WU K J, FENG Y T, et al.. Forward simulation of limb-viewing Michelson wind imaging interferometer based on O3 radiation source [J]. Acta Optica Sinica, 2019, 39(5): 0512005. (in Chinese)

[26] 何微微, 武魁军, 冯玉涛, 等. O3辐射源星载干涉仪测风不确定度分析[J]. 红外与激光工程, 2019, 48(8): 117-124.

    HE W W, WU K J, FENG Y T, et al.. Wind uncertainty analysis of onboard interferometer based on O3 radiation source[J]. Infrared and Laser Engineering, 2019, 48(8): 117-124.(in Chinese)

[27] WU K J, LI F Q, CHENG X W, et al.. Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm[J]. Applied Physics B, 2014, 117(2): 659-666.

[28] LIU X, JEFFRIES J B, HANSON R K, et al.. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature[J]. Applied Physics B, 2006, 82(3): 469-478.

何微微, 武魁军, 傅頔, 王后茂, 李娟. 临近空间风温遥感干涉仪设计及正演[J]. 光学 精密工程, 2020, 28(8): 1678. HE Wei-wei, WU Kui-jun, FU Di, WANG Hou-mao, LI Juan. Instrument design and forward modeling of near-space wind and temperature sensing interferometer[J]. Optics and Precision Engineering, 2020, 28(8): 1678.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!