作者单位
摘要
1 烟台大学物理与电子信息学院,山东 烟台 264005
2 中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071
3 中国科学院西安光学精密机械研究所中国科学院光谱成像技术重点实验室,陕西 西安 710119
4 中国科学院国家空间科学中心,北京 100190
针对标准泡法在远距离SO2监测定标不准确的实际问题,开展定标误差校正方法研究。首先,基于标准泡定标法原理以及大气辐射传输理论,提出消除光稀释效应影响的图像校正方法;然后,在充分分析窗片与滤光片反射以及气溶胶散射效应的基础上,对反射效应及散射特性对定标结果的影响进行量化;最后,综合上述影响因素计算得到光稀释效应校正及散射特性修正的定标曲线,并比较误差校正的标准泡定标法与DOAS定标法在反演SO2柱密度图像以及SO2排放速率之间差异。结果表明,所提出的校正方法可将标准泡法与DOAS法的定标结果差异从59%降低至7%,验证了该误差校正方法的有效性和准确度。
大气光学 SO2紫外相机 标准泡法 定标曲线 光稀释效应 误差校正 排放速率 
光学学报
2024, 44(6): 0601007
作者单位
摘要
1 烟台大学物理与电子信息学院, 山东 烟台 264005
2 中国科学院精密测量科学与技术创新研究院, 湖北 武汉 430071
3 中国科学院西安光学精密机械研究所, 陕西 西安 710119
SO2紫外相机因在时间分辨率、空间分辨率、探测灵敏度以及探测精度等诸多方面均具有显著优势而成功应用于火山活动监测及其动力学研究。为解决紫外相机反演SO2排放速率容易受烟羽湍流及图像低对比度影响等问题,提出了融入神经网络的光流算法。首先,基于大气紫外辐射传输特性,阐述了SO2紫外相机的工作机理及SO2浓度图像的反演方法;其次,将神经网络融入光流算法,实现了火山烟羽图像中SO2排放速率的精确反演;最后,与传统光流法进行对比,论证了神经网络光流算法的科学性及优越性与精确性。实验结果表明:在图像低对比度及烟羽湍流效应的双重影响下,神经网络光流法可以把边缘反演的误差从94%降低至5%,显著提高了SO2排放速率反演的精确性。
SO2相机 光流法 神经网络 排放速率 湍流 火山排放 SO2 camera optical flow algorithm neural network emission rate turbulence volcanic emission 
大气与环境光学学报
2024, 19(1): 98
作者单位
摘要
1 烟台大学物理与电子信息学院, 山东烟台 264005
2 中国科学院国家空间科学中心, 北京 100190
3 中国科学院西安光学精密机械研究所, 陕西西安 710119
4 中国科学院精密测量科学与技术创新研究院, 湖北武汉 430071
星载长波红外气辉成像干涉仪可实现对临近空间平流层区域大气风场信息的遥感观测。然而, 长波红外对温度更加敏感, 因此会给干涉仪引入更多的误差来源。鉴于此, 借鉴平流层风场干涉仪(StratosphericWindInterferometerforTransport, SWIFT)的设计参数, 在临边观测正演仿真的基础上, 开展了关键部件的相位热漂移研究及背景辐射的热不稳定分析, 给出了仪器温度变化引起的风场误差, 提出了通过校准泡对光程差相位的监测减小测风误差的方案。不确定度分析表明, 如果 SWIFT仪器关键部件的温度变化率控制在 10-3 K/s, Michelson干涉仪和 F-P滤光片因热漂移产生的测风误差分别为 37m/s和 20m/s。当校准泡对光程差相位的监测精度达到 10-3rad时, 热漂移引入的误差可降至 1m/s以内。该研究将为星载全天时临近空间长波红外测风干涉仪的设计及研制提供重要的理论指导。
大气风场 临近空间 Michelson干涉仪 卫星遥感 热漂移 atmosphericwind near-space Michelsoninterferometer satelliteremotesensing thermaldrift 
光学与光电技术
2023, 21(3): 37
作者单位
摘要
1 烟台大学物理与电子信息学院,山东 烟台 264005
2 中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071
3 中国科学院国家空间科学中心,北京 100190
中间层顶-低热层区域是地球大气中重要的空间区域。基于剥洋葱算法及氧分子气辉光谱理论,利用迈克耳孙全球高分辨率热层成像干涉仪(MIGHTI)测量的O2-A波段气辉辐射强度图像,反演得到海拔为92~140 km的大气温度廓线。首先,根据氧分子气辉光谱理论,结合MIGHTI仪器参数,计算了其各光谱通道信号强度随温度的变化关系;然后,利用剥洋葱算法提取各光谱通道的目标层信号强度,并结合信号强度与温度的函数关系,反演得到大气温度廓线;最后,通过与SABER卫星的观测结果及NRLMSIS-00大气模型的仿真数据的对比,验证了MIGHTI温度反演的可靠性与合理性。误差分析结果表明,MIGHTI的温度探测误差随高度增加而增大,在92 km处为1 K,在140 km处为13 K。
大气光学 温度反演 气辉辐射 临边观测 剥洋葱算法 
光学学报
2023, 43(12): 1201006
作者单位
摘要
1 烟台大学物理与电子信息学院,山东 烟台 264005
2 中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071
3 中国科学院西安光学精密机械研究所,陕西 西安 710119
基于紫外SO2相机成像探测技术的工作机理,结合紫外辐射传输理论提出了SO2相机的自定标理论。简要介绍了目前常用的3种定标(标准泡定标、DOAS定标和光谱定标)方法,并通过分析传统定标方法的局限性,阐述了自定标方法相对于传统定标方法的优势。实验结果表明,自定标法拟合的定标曲线斜率较传统方法所得定标曲线斜率相差约1.4%,平均相对误差约6%,满足测量精度要求。自定标方法具有准确、简便、实用的技术优点,在移动污染源的紫外成像遥感监测中具有良好的应用前景。
遥感 SO2相机 紫外光谱 自定标 成像遥感 
光学学报
2023, 43(12): 1228005
傅頔 1,2畅晨光 1孙剑 1李娟 1[ ... ]刘学斌 1,*
作者单位
摘要
1 中国科学院西安光学精密机械研究所光谱成像技术重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
3 烟台大学光电信息科学技术学院,山东 烟台 264003
多普勒差分干涉仪基于一种新型中高层大气风场探测系统,通过计算干涉图相位变化量反演观测目标源光谱的多普勒频移,实现大气风场测量。基准相位作为确定风场多普勒频移量的必要参数,其稳定性是保证风速测量精度的核心指标之一。针对非对称量相位漂移、相位斜率漂移和干涉图相位漂移这三项影响干涉仪基准相位的因素开展研究,基于多普勒差分干涉原理对其相位热漂移开展了理论分析,提出了各项因素相位漂移量的分离测试方法,并基于近红外多普勒差分干涉仪开展了实验测试。环境温度波动为0.27 ℃时,相位斜率变化量为670 mrad/m,干涉图相位漂移波动范围为8.9 mrad;修正干涉图相位漂移后,非对称量相位漂移约为4.7 mrad,均方根为0.98 mrad,等效风速测量误差为0.81 m/s。通过温度拉偏实验,得到非对称量相位漂移随温度的变化率为-493 mrad/℃的结论。
大气光学 中高层大气风场探测 多普勒差分干涉仪 相位稳定性 测试与分析 
光学学报
2022, 42(18): 1801003
作者单位
摘要
中国科学院武汉物理与数学研究所, 湖北 武汉 430071
临近空间风温遥感技术是研究大气动力学、热力学特性的重要手段,也是提高空间天气数值预报准确性的必要途径。针对临近空间大气风温遥感探测需求,通过分析临近空间风场和温度的探测原理和方法,并比较现有星载被动风温探测方式,提出了一种基于视场展宽迈克尔逊干涉仪的近红外星载风温成像干涉仪,其工作波长为O2分子在1.27 μm的谱线,探测范围覆盖整个临近空间。论述了系统工作原理和设计过程,其中,重点阐述了兼具视场展宽、色差矫正、温度补偿功能的Michelson干涉仪和用于对O2分子谱线鉴频的F-P干涉仪的设计,并进行了模拟仿真实验。仿真结果表明风速测量误差为18.98%,可满足临近空间大气风场和温度场探测要求。
风温遥感 临近空间 视场展宽 迈克尔逊干涉仪 星载成像干涉仪 F-P干涉仪 wind temperature remote sensing adjacent space field widening Michelson interferometer spaceborne imaging interferometer F-P interferometer 
光学与光电技术
2020, 18(6): 19
作者单位
摘要
1 武汉科技大学 城市学院, 湖北 武汉 430083
2 中国科学院 武汉物理与数学研究所, 湖北 武汉 430071
3 中国科学院 西安光学精密机械研究所, 陕西 西安 710119
4 中国科学院 国家空间科学中心, 北京 100190
临近空间(20~100 km)风温探测对于大气物理和空间科学的发展具有重要的学术意义和应用价值。以1.27 μm附近的O2(a1Δg)气辉为辐射源, 采用广角迈克尔逊干涉仪进行临边观测, 能够实现平流层、中间层及低热层区域(40~80 km)大气风场和温度场的同时探测。本文设计了临近空间风温遥感干涉仪, 并对该仪器进行了仪器建模及正演仿真。根据气辉临边辐射光谱特性及谱线选取的原则, 提出了采用两组强度不同的谱线进行风温遥感, 弱线用于低空探测, 以避免自吸收效应对测量结果的影响; 强线用于高空探测, 以期实现高的测量精度。建立了由大气辐射传输模块, 迈克尔逊干涉仪模块, 滤波器模块, 以及光学系统、传感器阵列、红外焦平面等设备的系统参数组成的正演模型。通过正演模型获得了临边观测图像, 并对风速及温度的测量不确定度进行了计算。数值模拟结果表明, 在40~80 km的高度内, 风测量精度为1~3 m/s, 温度测量精度为1~3 K, 满足临近空间风温探测精度的要求。
卫星遥感 临近空间 风温探测 Michelson干涉仪 satellite remote sensing near-space wind and temperature sensing Michelson interferometer 
光学 精密工程
2020, 28(8): 1678
作者单位
摘要
1 中国地质大学数学与物理学院, 湖北 武汉 430074
2 中国科学院武汉物理与数学研究所, 湖北 武汉 430071
工业烟囱及船舶尾气中SO2气体排放是造成大气污染的重要因素。 SO2容易被氧化生成硫酸雾或硫酸盐气溶胶, 产生酸雨, 严重危害大气生态环境平衡及人类健康。 现有的SO2光学遥感测量技术, 如拉曼散射激光雷达、 差分吸收激光雷达 (DIAL)、 傅里叶变换红外吸收光谱(FTIR)、 紫外差分吸收光谱(DOAS)、 高分辨光谱成像等, 难以兼顾气体污染监测对高时间分辨率、 高空间分辨率以及便携机动等应用需求。 近年来, 紫外SO2相机成像探测因探测精度高、 实用性强得到迅速发展, 该技术时间分辨率高、 空间分辨力强, 能从解析图像中直观在线获取污染气体浓度在空间的二维分布及随时间的排放率, 对于监测环境污染有重要作用。 基于紫外SO2相机成像探测技术, 围绕SO2柱浓度探测的测量原理及影响因素、 仪器设计及实验方法、 反演算法及结果比对等方面开展研究。 取得的成果主要有: (1)利用窄带滤光片的窄波窗口, 用紫外相机测量310 nm附近的SO2紫外吸收, 建立了紫外成像遥感监测理论模型, 介绍了紫外成像遥感检测获取SO2浓度图像的测量原理; (2)将滤光片放置镜头前后, 讨论了不同入射角对滤光片中心波长及透过率曲线的影响, 发现滤光片放置镜头后, 相机系统对SO2的灵敏度受入射角影响更小, 对SO2浓度图像的反演误差更小; (3)分析了太阳高度角对SO2浓度图像反演的影响, 阐明了SO2浓度反演曲线实时校准的不可或缺性; (4)通过理论分析设计出了紫外成像遥感探测装置, 开展了基于紫外成像遥感监测SO2气体排放的实验研究, 通过2-IM法拟合出了人工天空背景, 获得了SO2光学厚度图像, 利用标准泡进行校准, 反演出了SO2浓度图像; (5)采用DOAS技术对SO2气体排放进行监测, 与紫外成像遥感获得的SO2浓度进行对比表明, 两方法实验结果所计算得到的浓度信息趋势相一致, 从而证明紫外成像遥感监测技术测量结果的准确性, 同时展现了该技术在工厂烟囱及船舶尾气污染排放遥感监测中的巨大应用前景。
SO2相机 紫外光谱 差分吸收 成像遥感 SO2 camera Ultraviolet spectroscopy Differential optical absorption Imaging remote sensing 
光谱学与光谱分析
2020, 40(4): 1289
作者单位
摘要
1 中国科学院大学, 北京 100049
2 中国科学院武汉物理与数学研究所, 武汉 430071
为了准确有效监测工业烟囱排放,基于SO2及碳黑颗粒物的光学特性,设计并研制出一套双通道紫外成像遥感监测系统.该成像系统的两个光谱通道的中心波长分别定于310 nm和330 nm,利用两个通道的光学厚度之差反演SO2浓度图像,颗粒物浓度图像由330 nm通道获取,根据浓度图像结合光流法获取烟羽运动速度,进而计算得出SO2和碳黑颗粒物的排放速率.结果表明,该工业烟囱的SO2及碳黑颗粒物排放速率分别为72.48±3.16 kg/h和6.33±1.18 kg/h.实验采用紫外相机同时对工业烟囱排放的SO2及碳黑颗粒物进行监测,实验表明双通道紫外成像遥感监测兼具高时间分辨率与高空间分辨率,测量结果准确直观,在工业废气污染、船舶尾气污染以及火山喷发污染排放遥感监测中具有非常明显的技术优势及巨大的应用前景.
光学遥感 紫外成像 空气污染 吸收光谱 图像处理 Optical remote sensing UV imaging Air pollution Absorption spectra Image processing 
光子学报
2020, 49(4): 0404002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!