中国激光, 2016, 43 (1): 0106005, 网络出版: 2015-12-31   

高品质因数太赫兹超材料设计的仿真分析 下载: 641次

Simulation Analysis on the Designing of High-Q Terahertz Metamaterials
作者单位
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
摘要
提出了一种以非对称双开口环谐振器为基本单元的新型高品质因数Q 太赫兹超材料结构。当入射电场为垂直极化时,所提出的结构在不同的太赫兹频段分别表现出束缚模谐振、混合模式谐振和偶极子谐振3 种谐振响应,通过改变其单元结构的开口位置和水平金属微带线间的垂直距离可以调节3个谐振响应的品质因数和中心谐振频率。其中,束缚模谐振的品质因数最高可达40,相应的3 dB 带宽约为11.1 GHz;混合模式谐振的品质因数可达16,相应的3 dB 带宽约为62.4 GHz。这种具有高Q 值的太赫兹超材料在高分辨率薄膜传感器、高性能窄带滤波器以及高频调制器中具有广泛的应用前景。
Abstract
Novel high quality factor Q terahertz metamaterials based on asymmetric double split ring resonator as unit cells are reported. When the incident electric field is polarized perpendicular to the ring gaps, the proposed structure simultaneously sustains, the trapped- mode resonance, the mixed- mode resonance and the dipole resonance in different terahertz frequency ranges. The quality factor and center resonance frequency of the resonances can be tuned by changing the gap position and vertical distance between the horizontal metal microstrip lines of the metamaterials unit cells. Numerical simulation results show that the stop band of trapped- mode resonance can reach almost narrow line width of 11.1 GHz and the corresponding quality factor is about 40; the line width of mixed-mode resonance is about 62.4 GHz and the corresponding quality factor is about 16. The proposed high-Q metamaterials have extensive applications in the fields of terahertz research, such as for the high-resolution thin-film sensors, high-performance narrow-band terahertz filters and high frequency modulators.
参考文献

[1] 李化月, 刘建军, 韩张华, 等. 基于类电磁诱导透明效应的太赫兹折射率传感器[J]. 光学学报, 2014, 34(2): 0223003.

    Li Huayue, Liu Jianjun, Han Zhanghua, et al.. Terahertz metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223003.

[2] 方振华, 罗春荣, 赵晓鹏. 银树枝左手超材料的反常古斯-汉欣位移[J]. 光学学报, 2015, 35(3): 0316001.

    Fang Zhenhua, Luo Chunrong, Zhao Xiaopeng. Negative Goos-H nchen shift of left-handed-metamaterials based on the silver dendritic structure[J]. Acta Optica Sinica, 2015, 35(3): 0316001.

[3] 韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    Han Hao, Wu Dongwei, Liu Jianjun, et al.. A terahertz metamaterial analog of electromagnetically induced transparency[J].Acta Optica Sinica, 2014, 34(4): 0423003.

[4] Han N R, Chen Z C, Lim C S, et al.. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Optics Express, 2011, 19(8): 6990-6998.

[5] 梁浩, 李剑生, 郭云胜. 超材料谐振子间的电耦合谐振理论与实验研究[J]. 物理学报, 2015, 64(14): 144101.

    Liang Hao, Li Jiansheng, Guo Yunsheng. Theoretical and experimental study of the electric resonant coupling between two metamaterial resonators[J]. Acta Phys Sin, 2015, 64(14): 144101.

[6] Cao W, Singh R, Alnaib I A I, et al.. Low-loss ultra-high-Q dark mode plasmonicFano metamaterials[J]. Optics Letters,2012, 37(16):3366.

[7] Fedotov V A, Rose M, Prosvirnin S L, et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14):12243-12254.

[8] Singh R, Al-Naib I A, Koch M, et al.. Asymmetric planar terahertz metamaterials[J]. Optics Express, 2010, 18(12):13044-50.

[9] Yang Y, Huang R, Cong L, et al.. Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials[J]. Applied Physics Letters, 2011, 98(12): 121114.

[10] Singh R, Alnaib I A, Koch M, et al.. Sharp Fano resonances in THz metamaterials[J]. Optics Express, 2011, 19(7): 6312-6319.

[11] Jansen C, Alnaib I A I, Born N, et al.. Terahertz metasurfaces with high Q-factors[J]. Applied Physics Letters, 2011, 98(5):051109.

[12] Miyamaru F, Kubota S, Nakanishi T, et al.. Transmission properties of double- gap asymmetric split ring resonators in terahertz region[J]. Applied Physics Letters, 2012, 101(5): 051112.

[13] Cao Y P, Wang Y Y, Geng Z X, et al.. Tuning of Fano resonances in terahertz metamaterials[J]. Journal of Applied Physics,2015, 117(6): 063107.

[14] Singh R, Cao W, Alnaib I, et al.. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17): 171101.

[15] Singh R, Alnaib I, Cao W, et al.. The Fano resonance in symmetry broken terahertz metamaterials[J]. Terahertz Science & Technology IEEE Transactions, 2013, 3(6): 820-826.

[16] Alnaib I, Jansen C, Singh R, et al.. Novel THz metamaterial designs: from near-and far-field coupling to high-Q resonances[J]. Terahertz Science & Technology IEEE Transactions, 2013, 3(6): 772-782.

[17] 刘冉, 史金辉, Plum E, 等. 基于平面超材料的Fano 谐振可调谐研究[J]. 物理学报, 2012, 61(15): 154101.

    Liu Ran, Shi Jinhui, Plum E, et al.. Tuning Fano resonances in a planar metamaterial[J]. Acta Phys Sin, 2012, 61(15): 154101.

[18] Alnaib I, Singh R, Rockstuhl C, et al.. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials[J]. Applied Physics Letters, 2012, 101(7): 071108.

[19] Born N, Alnaib I, Jansen C, et al.. Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices[J]. Applied Physics Letters, 2014, 104(10): 101107.

[20] Alnaib I, Yang Y, Dignam M M, et al.. Ultra-high Q even eigenmode resonance in terahertz metamaterials[J]. Applied Physics Letters, 2015, 106(1): 011102.

[21] Ibraheem A N, Erik H, Carsten R, et al.. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances[J]. Physical Review Letters, 2014, 112(18): 183903.

邢维, 延凤平, 谭思宇, 刘硕, 李立朝. 高品质因数太赫兹超材料设计的仿真分析[J]. 中国激光, 2016, 43(1): 0106005. Xing Wei, Yan Fengping, Tan Siyu, Liu Shuo, Li Lizhao. Simulation Analysis on the Designing of High-Q Terahertz Metamaterials[J]. Chinese Journal of Lasers, 2016, 43(1): 0106005.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!