作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
设计了一种双波段太赫兹超材料增透膜结构,该增透膜采用层叠结构,即由两层金属-聚合物构成。通过数值计算得到了两层金属-聚合物结构金属表面的电场分布,分析了两波段超低反射产生的机理,并通过优化聚合物层的厚度与金属单元结构的尺寸,实现了在0.471 THz和1.560 THz两个频点处的超低反射,反射率最低分别为0.0028和0.0025,反射率在10%以内的带宽分别为0.26 THz和0.21 THz。研究结果为实现多波段太赫兹超材料增透膜应用提供了参考。
太赫兹技术 超材料 双波段 增透膜 耦合 
中国激光
2019, 46(6): 0614031
作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
提出了一种以金属-电介质复合结构为基本单元的磁导率μ近零的太赫兹超材料。在太赫兹波垂直入射的情况下,当电场为横磁偏振时,在1.44 THz谐振频率附近,可得到μ实部的最优值为0,μ近零的带宽(|μ|<0.05)约为0.2 THz;当电场为横电偏振时,在0.978 THz谐振频率附近,得到μ实部的最优值为0,μ近零的带宽(|μ|<0.05)约为0.1 THz。在固定的几何参数下,通过改变偏振方向可以实现该超材料在不同频段内的近零效果。分析了聚酰亚胺介质层厚度、金属层数以及入射角度对磁导率近零效果的影响,并讨论了该结构的容差范围。
材料 超材料 μ近零; 太赫兹 偏振 谐振 
中国激光
2018, 45(6): 0614001
作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
设计了一种基于站立结构的太赫兹超材料增透膜。利用双开口环站立结构实现了对太赫兹波段反射的抑制,使得该增透膜的反射率最低减小至0.001,反射率在0.1以下的带宽可达0.45 THz。分析了该超材料增透膜的工作机理,研究了两个开口环之间的距离以及聚合物基底的厚度对超材料增透膜性能的影响,并与单开口环结构的增透膜进行了性能对比。仿真及分析结果表明,所设计的超材料增透膜具有优异的宽带反射抑制性能和较大的制作参数容差特性。
材料 增透膜 太赫兹 站立结构 双开口环谐振器 
中国激光
2018, 45(4): 0414001
作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
设计了一种基于有图案石墨烯的超薄宽带太赫兹超材料吸收体, 该吸收体的厚度为33.254 μm(即入射波波长的1/7), 吸收率在80%以上的吸收带宽达到1.422 THz。仿真及分析结果表明, 该吸收体的吸收特性呈偏振无关, 并对入射角的变化不敏感;通过改变石墨烯的化学电势能够有效地调控吸收体的吸收能量, 增加聚酰亚胺中间层厚度可提高吸收体的吸收性能。
材料 石墨烯 超材料 太赫兹 吸收 宽带 
中国激光
2017, 44(7): 0703024
作者单位
摘要
北京交通大学 全光网络与现代通信网教育部点实验室, 北京 100044
随着大功率掺铥光纤激光器(TDFL)的广泛应用及其相关技术的迅速发展, 多芯TDFL受到了广大研究者的广泛关注, 其中有效的包层泵浦技术是实现多芯TDFL高功率输出的决定因素。TDFL通常采用波长为793 nm的激光进行泵浦, 通过不断优化工作在793 nm波长的双包层光纤的结构, 对其中传输的高斯光束进行整形, 当纤芯尺寸为6 μm, 环尺寸为6.5 μm且内包层折射率为1.462 4时, 最终获得了合适暗斑尺寸和环状光束宽度的中空光束。利用所设计的双包层光纤泵浦多芯TDFL, 可使多芯光纤内掺杂的铥离子更好的吸收泵浦光, 提高工作于2 μm波段多芯TDFL的输出激光功率和泵浦效率。
双包层光纤 石英基 中空光束 多芯 掺铥光纤激光器 double clad fiber quartz base hollow beam multi-core Thulium-doped fiber laser 
光电技术应用
2017, 32(1): 1
作者单位
摘要
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
提出了一种以非对称双开口环谐振器为基本单元的新型高品质因数Q 太赫兹超材料结构。当入射电场为垂直极化时,所提出的结构在不同的太赫兹频段分别表现出束缚模谐振、混合模式谐振和偶极子谐振3 种谐振响应,通过改变其单元结构的开口位置和水平金属微带线间的垂直距离可以调节3个谐振响应的品质因数和中心谐振频率。其中,束缚模谐振的品质因数最高可达40,相应的3 dB 带宽约为11.1 GHz;混合模式谐振的品质因数可达16,相应的3 dB 带宽约为62.4 GHz。这种具有高Q 值的太赫兹超材料在高分辨率薄膜传感器、高性能窄带滤波器以及高频调制器中具有广泛的应用前景。
材料 超材料 品质因数 太赫兹 谐振 
中国激光
2016, 43(1): 0106005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!