红外与激光工程, 2019, 48 (1): 0120004, 网络出版: 2019-04-02   

纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应

Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse
作者单位
1 西北工业大学 电子信息学院, 陕西 西安 710129
2 焦作师范高等专科学校, 河南 焦作 454001
摘要
氧化锌基紫外光电探测器较小的开关比和长的响应时间, 制约其在紫外检测中的实际应用。一种简易制备纳米金刚石修饰氧化锌纳米线紫外光电探测器的方法, 纳米金刚石和氧化锌纳米线混合物光电探测器的光电性能比氧化锌光电探测器有明显的提升: 快的响应时间和好的开关比; 优异的光电性能得益于纳米金刚石和纳米线之间的协同效应。这种策略为设计和制备新型光电系统提供了一种可能。
Abstract
ZnO-based photodetectors (PDs) have a small on/off ratio and long response time, which hamper their practical UV detection. Herein, a facile method to prepare a nanodiamond (ND)-decorated ZnO nanowire (ZNW) ultraviolet photodetector was demonstrated. This hybrid ZnO -ND UV photodetector considerably improved photodetection performance compared with bare ZnO. This hybrid device simultaneously exhibited remarkable detectivity, rapid response, and decent current on/off ratio. This excellent performance was attributed to the synergistic effect between NDs and the ZNWs. These results introduce a new scenario for designing and fabricating an innovative optoelectronic system.
参考文献

[1] Patel M, Kim H, Kim J. All transparent metal oxide ultraviolet photodetector[J]. Advanced Electronic Materials, 2016, 1(11): 1500232.

[2] Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors[J]. Sensors, 2009, 9(8): 6504.

[3] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: sensitivity and influencing factors[J]. Sensors, 2010, 10(3): 2088.

[4] Liao X, Yan X, Lin P, et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer[J]. Acs Appl Mater Interfaces, 2015, 7(3): 1602-1607.

[5] Fulati A, Ali S M U, Riaz M, et al. Miniaturized pH sensors based on zinc oxide nano-tubes/nanorods[J]. Sensors, 2009, 9(11): 8911-8923.

[6] Wan Q, Li Q H, Chen Y J, et al. Positive temperature coefficient resistance and humidity sens-ing properties of Cd-doped ZnO nanowires[J]. Applied Physics Letters, 2004, 84(16): 3085-3087.

[7] Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi-conductor Science Technology, 2005, 20(4): S35.

[8] Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232.

[9] Zhan Z Y, Xu C Y, Zhen L, et al. Large-scale synthesis of single-crystalline KNbO nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36(2): 679-682.

[10] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Inter-Faces, 2014, 6(2): 1139-1144.

[11] Kim K, Kim G, Lee B R, et al. High-resolution electro hydrodynamic jet printing of small-molecule organic light-emitting diodes[J]. Nanoscale, 2015, 7(32):13410.

[12] Kim S Y, Kim K, Hwang Y H, et al. High-resolution electro hydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance[J]. Nanoscale, 2016, 39(8): 17113-17121.

[13] Kim M, Park J, Ji S, et al. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates[J]. Nanoscale, 2016, 8(18):9504-9510.

[14] Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors: from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3): 403.

[15] Tran V T, Wei Y, Yang H, et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device[J]. Nanotechnology, 2017, 28(9): 095204.

[16] Zhan Z, An J, Wei Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2016, 9(3): 965-993.

[17] Teng F, Zheng L, Hu K, et al. Surface oxide thin layer of copper nanowires enhanced UV selective response of ZnO film photodetector[J]. Journal of Materials Chemistry C, 2016, 4(36): 02901A.

[18] Chen M, Hu L, Xu J, et al. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector[J]. Small, 2011, 7(17): 2449-2453.

[19] Galloro J, Ginzburg M, Míguez H, et al. Replicating the structure of a cross linked polyferrocenylsilane inverse opal in the form of a magnetic ceramic[J]. Advanced Functional Materials, 2002, 12(5): 382-388.

[20] Retamal J R D, Chen C Y, Lien D H, et al. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction[J]. Acs Photonics, 2014, 1(4): 354-359.

[21] Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity[J]. Nature Communications, 2014, 5(4007): 4007.

[22] Nasiri N, Bo R, Chen H, et al. Structural engineering of nano-grain boundaries for low-voltage UV-photodetectors with gigantic photo-to dark-current ratios [J]. Advanced Optical Materials, 2016, 4(11): 1787-1795.

[23] Monroy E, Omnès F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science & Technology, 2003, 18(4): R33.

[24] Fang X, Bando Y, Liao M, et al. Ultraviolet sensors: an efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability[J]. Advanced Functional Materials, 2010, 20(3): 500-508.

[25] Ding L, Liu N, Li L, et al. Graphene-skeleton heat-coordinated and nanoamorphous-surface-state controlled pseudo-negative-photoconductivity of tiny SnO2 nano-particles[J]. Advanced Materials, 2015, 27(23): 3525-3532.

[26] Li X, Gao C, Duan H, et al. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 2013, 9(11): 2005.

[27] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 2013, 8(1): 1-6.

[28] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20): 3907-3915.

[29] Liu H, Zhang Z, Hu L, et al. New UV-A photodetector based on individual potassium niobate nanowires with high performance[J]. Advanced Optical Materials, 2015, 2(8): 771-778.

[30] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19): 191103.

[31] Cheng G, Wu X, Liu B, et al. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed[J]. Applied Physics Letters, 2011, 99(20): 203105.

[32] Lu J, Xu C, Dai J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8):3396-3403.

[33] Fu X W, Liao Z M, Xu J, et al. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects.[J]. Nanoscale, 2013, 5(3): 916-920.

[34] He P, Feng S, Liu S, et al. Ultrafast UV response detectors based on multi-channel ZnO nan-owire networks[J]. Rsc Advances, 2015, 5(127): 105288-105291.

[35] Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: towards high-performance nanohybrid ultraviolet photodetectors[J]. Advanced Functional Materials, 2013, 23(39): 4941-4948.

[36] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Interfaces, 2014, 6(2): 1139-1144.

[37] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles [J]. Journal of Physical Chemistry C, 2010, 114(114): 19835-19839.

[38] Zhan Z, Liu L, Wang W, et al. Ultrahigh surface-enhanced raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap[J]. Advanced Optical Materials, 2016, 4(12): 2021-2027.

[39] Nasiri N, Bo R, Fu L, et al. Three-dimensional nano-heterojunction networks: a highly per-forming structure for fast visible-blind UV photodetectors[J]. Nanoscale, 2017, 9(5): 2059.

[40] Chen C Y, Chen M W, Hsu C Y, et al. Enhanced recovery speed of nanostructured ZnO photodetectors using nanobelt networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(6): 1807-1811.

[41] Zheng Q, Huang J, Yang H, et al. A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics[J]. Nanotechnology, 2017, 28(4): 045202.

[42] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced Materials, 2001, 13(2): 113-116.

[43] Sankaran K J, Kalpataru P, Balakrishnan S, et al. Catalytically induced nanographitic phase by a plati-num-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films[J]. J Mater Chem C, 2015, 3(11): 2632-2641.

[44] Lin Z, Xiao J, Li L, et al. Nanodiamond-embedded p-type copper (I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Adv Energy Mater, 2016, 6: 1501865.

[45] Xiao J, Liu P, Li L, et al. Fluorescence origin of nanodiamonds[J]. J Phys Chem C, 2015, 119(4): 2239-2248.

[46] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Adv Mater, 2015, 27(48): 8035-8041.

[47] Hu X, Zhang X, Liang L, Bao J, et al. High-performance flexible broadband photodetector based on organo lead halide perovskite[J]. Adv Funct Mater, 2014, 24 (46): 7373-7380.

[48] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12): 7853-7858.

蒋海涛, 刘诗斌, 元倩倩. 纳米金刚石和氧化锌纳米线的协同效应提高紫外光电响应[J]. 红外与激光工程, 2019, 48(1): 0120004. Jiang Haitao, Liu Shibin, Yuan Qianqian. Synergistic effect of hybrid nanodiamond/ZnO nanowires for improved ultraviolet photoresponse[J]. Infrared and Laser Engineering, 2019, 48(1): 0120004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!