激光与光电子学进展, 2017, 54 (12): 121901, 网络出版: 2017-12-11   

脉冲能量对飞秒激光等离子体丝形成的影响

Effect of Pulse Energy on Formation of Femtosecond Laser Plasma Filament
作者单位
1 长春理工大学理学院, 吉林 长春 130022
2 长春理工大学化学与环境工程学院, 吉林 长春 130022
摘要
研究了脉冲能量对飞秒激光等离子体丝形成的影响, 基于荧光光谱法和照相图像法得到脉冲能量对飞秒激光等离子体丝长度和成丝起点的影响规律。实验结果表明:飞秒激光在大气中传输时, 经透镜聚焦后形成较长的等离子体丝; 随着脉冲能量的增大, 等离子体丝的成丝起点位置向聚焦透镜位置移动, 同时等离子体丝的长度增加; 等离子体丝辐射的N2 337 nm荧光谱线强度峰值位置靠近聚焦透镜, 并且整体荧光光谱强度得到增强; 相比于照相图像法, 荧光光谱法测量得到的等离子体丝长度更加可靠。最后对脉冲能量对等离子体丝起点位置的影响进行了理论解释。
Abstract
The effect of pulse energy on the formation of femtosecond laser plasma filament is studied by the fluorescence spectrum method and the photographic imaging method, and the influence of pulse energy on the length and the starting position of femtosecond laser plasma filament is obtained. The experimental results show that the long plasma filament forms after focusing of lens when the femtosecond laser transmits in the air. As the laser energy is increasing, the starting position of plasma filament moves toward the position of the focusing lens and the plasma filament length increases. The position of the peak intensity of the N2 337 nm fluorescence spectrum is close to the focusing lens, and the whole fluorescence spectrum intensity increases. Compared with the photographic imaging method, the fluorescence spectrum method has high reliability in the plasma filament length measurement. Finally, the influence of pulse energy on the starting position and the length of plasma filament is explained theoretically.
参考文献

[1] Yang H, Zhang J, Yu W, et al. Long plasma channels generated by femtosecond laser pulses[J]. Physical Review E, 2001, 65(1): 016406.

[2] Defense Technical Information Center. Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime[R]. Florida: University of Central Florida Orlando School of Optics, 2006: ADA520381.

[3] 张适昌, 张东东, 严萍, 等. 飞秒激光引导闪电的模拟实验研究[J]. 物理学报, 2007, 56(9): 5293-5297.

    Zhang Shichang, Zhang Dongdong, Yan Ping, et al. Laboratory simulation of femtosecond laser guided lightning discharge[J]. Acta Physica Sinica, 2007, 56(9): 5293-5297.

[4] 邢松龄, 刘磊, 邹贵生, 等. 飞秒激光参数对石英玻璃微孔加工的影响[J]. 中国激光, 2015, 42(4): 0403001.

    Xing Songling, Liu Lei, Zou Guisheng, et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese J Lasers, 2015, 42(4): 0403001.

[5] 王浩竹, 杨丰赫, 杨帆, 等. 飞秒激光在金属钼表面诱导产生纳米量级周期条纹结构的研究[J]. 中国激光, 2015, 42(1): 0103001.

    Wang Haozhu, Yang Fenghe, Yang Fan, et al. Investigation of femtosecond-laser induced periodic surface structure on molybdenum[J]. Chinese J Lasers, 2015, 42(1): 0103001.

[6] Gurevich E L, Hergenrder R. Femtosecond laser-induced breakdown spectroscopy: Physics, applications, and perspectives[J]. Applied Spectroscopy, 2007, 61(10): 233A-242A.

[7] Labutin T A, Lednev V N, Ilyin A A, et al. Femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 90-118.

[8] 吴柯岩, 任忠国, 苏容波, 等. 双飞秒激光脉冲诱导击穿光谱增强特性研究[J]. 强激光与粒子束, 2016, 28(8): 082002.

    Wu Keyan, Ren Zhongguo, Su Rongbo, et al. Enhanced laser-induced breakdown spectroscopy on Co sample with double femtosecond laser pulses[J]. High Power Laser and Particle Beams, 2016, 28(8): 082002.

[9] 陈娜, 刘尧香, 杜盛喆, 等. 纳秒、飞秒激光诱导击穿光谱技术的应用研究进展[J]. 激光与光电子学进展, 2016, 53(5): 050003.

    Chen Na, Liu Yaoxiang, Du Shengzhe, et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050003.

[10] Hoyer W, Knorr A, Moloney J V, et al. Photoluminescence and terahertz emission from femtosecond laser-induced plasma channels[J]. Physical Review Letters, 2005, 94(11): 115004.

[11] Garlatti E, Carretta S, Schnack J, et al. Response to "Comment on‘ "Theoretical design of molecular nanomagnets for magnetic refrigeration" ’[J]. Applied Physics Letters, 2014, 105(4): 046102.

[12] Dharmadhikari J A, Deshpande R A, Nath A, et al. Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids[J]. Applied Physics B, 2014, 117(1): 471-479.

[13] 俞进, 郝作强, 张杰, 等. 用声学诊断方法测量激光等离子体通道的长度与电子密度[J]. 物理学报, 2005, 54(3): 1290-1294.

    Yu Jin, Hao Zuoqiang, Zhang Jie, et al. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses[J]. Acta Physica Sinica, 2005, 54(3): 1290-1294.

[14] Liu Y, Wen Q, Xu S, et al. Pulse characterization during femtosecond laser filamentation in air by two-photon fluorescence measurement[J]. Applied Physics B, 2011, 105(4): 825-831.

[15] Point G, Milián C, Couairon A, et al. Generation of long-lived underdense channels using femtosecond filamentation in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(9): 094009.

[16] 高勋, 杜闯, 李丞, 等. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量[J]. 物理学报, 2014, 63(9): 095203.

    Gao Xun, Du Chuang, Li Cheng, et al. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy[J]. Acta Physica Sinica, 2014, 63(9): 095203.

[17] Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti: Sapphire laser pulse in air[J]. Optics Communications, 1999, 171(4): 285-290.

[18] Watanabe W, Itoh K. Spatial coherence of supercontinuum emitted from multiple filaments[J]. Japanese Journal of Applied Physics, 2001, 40(2A): 592-595.

[19] Peano J R, Sprangle P, Hafizi B, et al. Transmission of intense femtosecond laser pulses into dielectrics[J]. Physical Review E, 2005, 72(3): 036412.

姚爽, 宋超, 高勋, 林景全. 脉冲能量对飞秒激光等离子体丝形成的影响[J]. 激光与光电子学进展, 2017, 54(12): 121901. Yao Shuang, Song Chao, Gao Xun, Lin Jingquan. Effect of Pulse Energy on Formation of Femtosecond Laser Plasma Filament[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121901.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!