激光与光电子学进展, 2015, 52 (11): 110002, 网络出版: 2015-12-01   

25%效率晶体硅基太阳能电池的最新进展 下载: 1218次

Newest Achievement of More than 25% Conversion Efficiency with Crystalline Silicon-Base Solar Cell
作者单位
中国科学院半导体研究所半导体材料重点实验室, 北京 100083
摘要
综述了目前光电转换效率达到25%的单结非聚光晶体硅基太阳能电池研究的最新进展,阐述发射极钝化-背部局域扩散电池结构、叉指背接触结构、异质结结构和异质结背接触结构太阳能电池高效率的原因,并结合我国硅基光伏产业现状进行了发展趋势预测和技术需求分析。
Abstract
The latest progress of single-junction non-concentration crystalline silicon solar cell research of which photoelectric conversion efficiency up to 25% is summarized. The reason why passivated emitter, rear locally-diffused (PERL) structure, interdigital back-contacted (IBC) structure, hetero-junction with intrinsic thin-layer (HIT) structure and hetero-junction back-contacted (HBC) structure solar cells have so high efficiency is explained. Combined with the current status of China′ s silicon-based photovoltaic industry, the development trends are predicted, and the technical demands are analysed.
参考文献

[1] Ragsdale R G, Namkoong D. The NASA-Langley building solar project and the supporting Lewis solar technology program[J]. Solar Energy, 1976, 18(1): 41-50.

[2] Watanabe C. Identification of the role of renewable energy: A view from Japan's challenge: The New Sunshine Program [J]. Renewable Energy, 1995, 6(3): 237-274.

[3] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys, 1954, 25: 676-77.

[4] Zhao J, Wang A, Green M A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates[J]. Prog Photovoltaics: Res Appl, 1999, 7(7): 471-474.

[5] Green M A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(3): 183-189.

[6] David D S, Peter C, Staffan W, et al.. Toward the practical limits of silicon solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469.

[7] Junichi N, Naoki A, Takeshi H, et al.. Development of hetero junction back contact Si solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1491-1495.

[8] Keiichiro M, Masato S, Taiki H, et al.. Achievement of more than 25% conversion ffficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435.

[9] 张力典, 沈鸿烈, 岳之浩. 多晶硅减反射复合结构的制备与性能[J]. 光学学报, 2013 33(6): 0631002.

    Zhang Lidian, Shen Honglie, Yue Zhihao. The preparation and performance of the polycrystalline silicon antireflection coat[J]. Acta Optica Sinica, 2013, 33(6): 0631002.

[10] 周涛, 陆晓东, 李媛, 等. 晶硅太阳电池上表面增透膜研究[J]. 激光与光电子学进展, 2014, 51(10): 103101.

    Zhou Tao, Lu Xiaodong, Li Yuan, et al.. The research of the surface antireflection film in the solar cell[J]. Laser & Optoelectronics Progress, 2014, 51(10): 103101.

[11] Hahn G. Status of selective emitter technology[C]. 25th European Photovoltaic Solar Energy Conference and Exhibition, 2010.

[12] Benick J, Hoex B, Dingemans G, et al.. High-efficiency n-type silicon solar cells with front side boron emitter[C]. Proceedings of the 24th European Photovoltaic Solar Energy Conference, 2009: 863-870.

[13] Green M A, Zhao J, Wang A, et al.. Progress and outlook for high-efficiency crystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1): 9-16.

[14] Schwartz R J, Lammert M D. Silicon solar cells for high concentration applications[C]. IEEE Electron Devices Meeting, 1975, 21: 350-352.

[15] Lammert M D, Schwartz R J. The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight[J]. IEEE Transactions on Electron Devices, 1977, 24(4): 337-342.

[16] Lamers M, Mewe A A, Romijn I G, et al.. Towards 21% efficient N-CZ IBC based on screen printing[C]. 26th EUPVSEC, 2011.

[17] Peibst R, Harder N P, Merkle A, et al.. High-efficiency RISE IBC solar cells: Influence of rear side passivation on pn junction meander recombination[C]. Proc 28th Eur Photovoltaic Sol Energy Conf Exhib, 2013: 971-975.

[18] Mulligan W P, Rose D H, Cudzinovic M J, et al.. Manufacture of solar cells with 21% efficiency[C]. Proc 19th EPVSEC, 2004: 387.

[19] Smith D D, Cousins P J, Masad A, et al.. Generation III high efficiency lower cost technology: Transition to full scale manufacturing[C]. IEEE Photovoltaic Specialists Conference (PVSC), 2012: 001594.

[20] Swanson R M. Approaching the 29% limit efficiency of silicon solar cells[C]. Conference Record of the Thirty-first IEEE, 2005: 889-894.

[21] Tawada Y, Tsuge K, Kondo M, et al.. Properties and structure of a-SiC: H for high-efficiency a-Si solar cell[J]. Journal of Applied Physics, 1982, 53(7): 5273-5281.

[22] Taguchi M, Yano A, Tohoda S, et al.. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. IEEE Journal of Photovoltaics, 2014, 4(1): 96-99.

[23] 张超, 张庆茂, 郭亮, 等. 非晶硅薄膜太阳能电池的紫外激光制绒工艺[J]. 中国激光, 2013, 40(7): 0707004.

    Zhang chao, Zhang Qingmao, Guo liang, et al.. Texturing process with 355 nm laser for amorphous silicon film solar cell [J]. Chinese J Lasers, 2013, 40(7): 0707004.

[24] 夏博, 姜澜, 王素梅, 等. 飞秒激光微孔加工[J]. 中国激光, 2013, 40(2): 0201001.

    Xia Bo, Jiang Lan, Wang Sumei, et al.. Femtosecond laser drilling of micro-holes[J]. Chinese J Lasers, 2013, 40(2): 0201001.

[25] Xiao S Z, Ostendorf A. Laser processing in solar cell production (invited paper)[J]. Chinese J Lasers, 2009, 36(12): 3116-3124.

邓庆维, 黄永光, 朱洪亮. 25%效率晶体硅基太阳能电池的最新进展[J]. 激光与光电子学进展, 2015, 52(11): 110002. Deng Qingwei, Huang Yongguang, Zhu Hongliang. Newest Achievement of More than 25% Conversion Efficiency with Crystalline Silicon-Base Solar Cell[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!