中国激光, 2018, 45 (7): 0702003, 网络出版: 2018-09-11   

选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究 下载: 1721次

Anisotropy of Microstructure and Tensile Properties of AlSi10Mg Formed by Selective Laser Melting
作者单位
中国航发控制系统研究所3D使能研发技术联合实验室, 江苏 无锡 214063
引用该论文

侯伟, 陈静, 储松林, 王修专, 杨志逸, 张毓祺, 滕伟斌. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003.

Wei Hou, Jing Chen, Songlin Chu, Xiuzhuan Wang, Zhiyi Yang, Yuqi Zhang, Weibin Teng. Anisotropy of Microstructure and Tensile Properties of AlSi10Mg Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2018, 45(7): 0702003.

参考文献

[1] 黄卫东, 林鑫, 陈静, 等. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007: 1- 20.

    黄卫东, 林鑫, 陈静, 等. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007: 1- 20.

    Huang WD, LinX, ChenJ, et al.Laser solid forming technology[M]. Xi'an: Northwestern Polytechnical University Press, 2007: 1- 20.

    Huang WD, LinX, ChenJ, et al.Laser solid forming technology[M]. Xi'an: Northwestern Polytechnical University Press, 2007: 1- 20.

[2] Baufeld B, van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties[J]. Materials and Design, 2010, 31(1): S106-S111.

    Baufeld B, van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties[J]. Materials and Design, 2010, 31(1): S106-S111.

[3] 谭华, 张凤英, 温如军, 等. 激光立体成形粉末流输送的数值模拟研究[J]. 中国激光, 2011, 38(10): 1003003.

    谭华, 张凤英, 温如军, 等. 激光立体成形粉末流输送的数值模拟研究[J]. 中国激光, 2011, 38(10): 1003003.

    Tan H, Zhang F Y, Wen R J, et al. Numerical simulation of powder feed of laser solid forming[J]. Chinese Journal of Lasers, 2011, 38(10): 1003003.

    Tan H, Zhang F Y, Wen R J, et al. Numerical simulation of powder feed of laser solid forming[J]. Chinese Journal of Lasers, 2011, 38(10): 1003003.

[4] Louvis E, Fox P, Sutcliffe C. Selective laser melting of aluminum components[J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284.

    Louvis E, Fox P, Sutcliffe C. Selective laser melting of aluminum components[J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284.

[5] Wong M, Tsopanos S, Sutcliffe C, et al. Selective laser melting of heat transfer devices[J]. Rapid Prototyping Journal, 2007, 13(5): 291-297.

    Wong M, Tsopanos S, Sutcliffe C, et al. Selective laser melting of heat transfer devices[J]. Rapid Prototyping Journal, 2007, 13(5): 291-297.

[6] Kruth J P, Froyen L, Vaerenbergh J V, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1): 616-622.

    Kruth J P, Froyen L, Vaerenbergh J V, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1): 616-622.

[7] 杨雄文, 杨永强, 刘洋, 等. 选区激光熔化成形典型几何特征尺寸精度研究[J]. 中国激光, 2015, 42(3): 0303004.

    杨雄文, 杨永强, 刘洋, 等. 选区激光熔化成形典型几何特征尺寸精度研究[J]. 中国激光, 2015, 42(3): 0303004.

    Yang X W, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(3): 0303004.

    Yang X W, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(3): 0303004.

[8] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials and Design, 2014, 63(2): 856-867.

    Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials and Design, 2014, 63(2): 856-867.

[9] Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimization and mechanical properties development[J]. Materials and Design, 2015, 65: 417-424.

    Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimization and mechanical properties development[J]. Materials and Design, 2015, 65: 417-424.

[10] Li B, Wang H W, Jie J C, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al-7.5Si-0.5Mg alloy[J]. Materials and Design, 2011, 32(3): 1617-1622.

    Li B, Wang H W, Jie J C, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al-7.5Si-0.5Mg alloy[J]. Materials and Design, 2011, 32(3): 1617-1622.

[11] Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructure and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 157-162.

    Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructure and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 157-162.

[12] Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139-146.

    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139-146.

[13] Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

    Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.

[14] 钱德宇, 陈长军, 张敏, 等. 选区激光熔化成形多孔铝合金的显微组织及微观力学性能研究[J]. 中国激光, 2016, 43(4): 0403002.

    钱德宇, 陈长军, 张敏, 等. 选区激光熔化成形多孔铝合金的显微组织及微观力学性能研究[J]. 中国激光, 2016, 43(4): 0403002.

    Qian D Y, Chen C J, Zhang M, et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(4): 0403002.

    Qian D Y, Chen C J, Zhang M, et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016, 43(4): 0403002.

[15] 张博, 曹毅, 王玲, 等. 选区激光熔化体心立方多孔结构的各向异性[J]. 中国激光, 2017, 44(8): 0802005.

    张博, 曹毅, 王玲, 等. 选区激光熔化体心立方多孔结构的各向异性[J]. 中国激光, 2017, 44(8): 0802005.

    Zhang B, Cao Y, Wang L, et al. Anisotropy of body-centered-cubic structures by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(8): 0802005.

    Zhang B, Cao Y, Wang L, et al. Anisotropy of body-centered-cubic structures by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(8): 0802005.

[16] 侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

    侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

    Hou H P, Liang Y C, He Y L, et al. Microstructure evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2): 0202007.

    Hou H P, Liang Y C, He Y L, et al. Microstructure evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2): 0202007.

[17] 肖振楠, 刘婷婷, 廖文和, 等. 选区激光熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 0902001.

    肖振楠, 刘婷婷, 廖文和, 等. 选区激光熔化成形TC4钛合金热处理后微观组织和力学性能[J]. 中国激光, 2017, 44(9): 0902001.

    Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 0902001.

    Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 0902001.

[18] Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment[J]. Materials Science & Engineering A, 2014, 590(2): 153-160.

    Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment[J]. Materials Science & Engineering A, 2014, 590(2): 153-160.

[19] Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering A, 2016, 663: 116-125.

    Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering A, 2016, 663: 116-125.

[20] Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials and Design, 2012, 34: 159-169.

    Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials and Design, 2012, 34: 159-169.

[21] Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115: 285-294.

    Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115: 285-294.

[22] Gänmann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

    Gänmann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

[23] KurzW, Fisher DJ. Fundamentals of solidification[M]. Beijing: Higher Education Press, 2010: 64- 74.

    KurzW, Fisher DJ. Fundamentals of solidification[M]. Beijing: Higher Education Press, 2010: 64- 74.

    KurzW, Fisher DJ. 凝固原理[M]. 北京: 高等教育出版社, 2010: 64- 74.

    KurzW, Fisher DJ. 凝固原理[M]. 北京: 高等教育出版社, 2010: 64- 74.

[24] Nogita K, Dahle A K. Effects of boron on eutectic modification of hypoeutectic Al-Si alloys[J]. Scripta Materialia, 2003, 48(3): 307-313.

    Nogita K, Dahle A K. Effects of boron on eutectic modification of hypoeutectic Al-Si alloys[J]. Scripta Materialia, 2003, 48(3): 307-313.

[25] Nogita K, Dahle A K. Eutectic solidification in hypoeutectic Al-Si alloys: electron backscatter diffraction analysis[J]. Materials Characterization, 2001, 46(4): 305-310.

    Nogita K, Dahle A K. Eutectic solidification in hypoeutectic Al-Si alloys: electron backscatter diffraction analysis[J]. Materials Characterization, 2001, 46(4): 305-310.

[26] Hosch T, England L, Napolitano R. Analysis of the high growth-rate transition in Al-Si eutectic solidification[J]. Journal of Materials Science, 2009, 44(18): 4892-4899.

    Hosch T, England L, Napolitano R. Analysis of the high growth-rate transition in Al-Si eutectic solidification[J]. Journal of Materials Science, 2009, 44(18): 4892-4899.

侯伟, 陈静, 储松林, 王修专, 杨志逸, 张毓祺, 滕伟斌. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003. Wei Hou, Jing Chen, Songlin Chu, Xiuzhuan Wang, Zhiyi Yang, Yuqi Zhang, Weibin Teng. Anisotropy of Microstructure and Tensile Properties of AlSi10Mg Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2018, 45(7): 0702003.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!