光谱学与光谱分析, 2010, 30 (8): 2049, 网络出版: 2011-01-26  

Cs2NaYF6∶Ho3+的电子光谱与能级结构分析

Electronic Spectra and Energy Levels Analysis of Ho3+ in Cs2NaYF6
作者单位
1 重庆邮电大学数理学院, 重庆400065
2 重庆亚派桥梁工程质量检测有限公司, 重庆400065
摘要
综合运用稀土光谱理论、 量子力学、 晶体场理论对高对称稀土离子Cs2NaYF6∶Ho3+的电子光谱与能级结构展开了深入的研究。 4 600~24 000 cm-1范围内不同温度下的电子吸收光谱清楚的记录了从基态到不同激发态5FJ(J=7,6,5,4), 5FS(S=5,4,3), 5GP(P=6,5)及3K8的跃迁。 这些跃迁表现为零声子线(ZPL)及丰富的振动结构。 由光谱解析结果得到50个Ho3+的能级数据, 还运用标准f-shell程序进行能级拟合及晶场分析, 得到Cs2NaYF6∶Ho3+能级的计算值及相应的哈密顿量参数。 同时, 对同类冰晶石晶格中不同配体(Cs2NaYF6∶Ho3+, Cs2NaYCl6∶Ho3+)的能级及拟合参数进行了对比。
Abstract
The electronic spectra and energy levels of Ho3+ in Cs2NaYF6 were studied on basis of rare earth (RE) spectrum, quantum mechanics and crystal field theory. Detailed analysis on electronic absorption spectra at temperatures down to 10 K in the range of 4 600-24 000 cm-1 was carried out. The transitions, with zero phonon lines (ZPL) and abundant vibronic sidebands, from ground states to different excited states such as 5IJ(J=7,6,5,4),5FS(S=5,4,3),5GP(P=6,5) and 3K8 were clearly observed. All the transitions have been assigned and 50 experimental crystal field levels have been obtained. The dataset has been investigated by standard f-shell program, which gave out the calculated energy levels and the corresponding empirical Hamiltonian parameters. The comparison of the energy levels and Hamiltonian parameters was made with that of Cs2NaYCl6∶Ho3+ as well.
参考文献

[1] Helmholz L, Guzzo A V, Sanders R N. J. Chem. Phys., 1961, 35: 1349.

[2] Reid M F, Pieterson L V. Phys. Rev. B, 2000, 62: 14744.

[3] LIU Quan-sheng, ZHANG Xi-yan, BAI Zhao-hui, et al(刘全生, 张希艳, 柏朝晖, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(3): 769.

[4] LIN Qiong-fei, XIA Hai-ping, WANG Jin-hao, et al(林琼斐, 夏海平, 王金浩, 等). Acta Photonica Sinica(光子学报), 2008, 37(11): 2269.

[5] Morley J P, Faulkner T R, Richardson F S. J. Chem. Phys., 1981, 75: 539.

[6] Tanner P A, Khaidukov N M. J. Phys.: Condens. Matter, 1997, 9: 7817.

[7] Morss L R, Siegel M, Sringer L, et al. Inorg. Chem., 1970, 9: 1771.

[8] Tanner P A. Top Curr. Chem., 2004, 241: 167.

[9] Tanner P A, Kumar V V, Jayasankar C K, et al. J. Alloys and Compounds, 1994, 215: 349.

[10] Pieterson L V, Wegh R T, Meijerink A, et al. J. Chem. Phys., 2001, 115: 9382.

[11] Pieterson L V, Reid M F, Burdick G W, et al. Phys. Rev. B, 2002, 65: 045114.

[12] Pieterson L V, Reid M F, Meijerink A, Phys. Rev. Lett., 2002, 88: 067405.

[13] Zhou X J, Mak C S K, Tanner P A, et al. Phys. Rev. B, 2006, 73: 075113.

[14] Zhou X J, Tanner P A, Faucher M D. J. Phys. Chem. C, 2007, 111: 683.

周贤菊, 任重丹, 罗斌, 冯乔春. Cs2NaYF6∶Ho3+的电子光谱与能级结构分析[J]. 光谱学与光谱分析, 2010, 30(8): 2049. ZHOU Xian-ju, REN Chong-dan, LUO Bin, FENG Qiao-chun. Electronic Spectra and Energy Levels Analysis of Ho3+ in Cs2NaYF6[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2049.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!