光学学报, 2010, 30 (4): 1055, 网络出版: 2010-04-20   

高占空比大功率半导体激光线阵热特性分析

Thermal Analysis of High-Power,High-Duty-Cycle Laser Diode Array
作者单位
1 中国科学院 长春光学精密机械与物理研究所 激发态开放实验室,吉林 长春 130033
2 中国科学院 研究生院,北京 100049
摘要
针对微通道热沉封装半导体激光列阵(LDA)建立三维有限元热分析模型,对其在20%高占空比工作时的瞬态和稳态温度分布进行模拟分析。模拟结果表明加电流后的几十微秒内有源区温度缓慢上升,此后相邻发光单元之间发生热交叠,温度快速上升,最后由于热弛豫积累效应达到热平衡;稳态时有源区温度分布呈现与器件结构一致的周期性,各发光单元温度分布一致,温升集中在有源层电极区内,绝缘区温升快速减小,出光面温度较高,180 A电流下工作时沿腔长方向最大存在3 K的温差。试验测试不同电流下工作时的输出特性,得到器件的有源区温升及稳态热阻与模拟结果基本吻合。
Abstract
A three-dimensional finite element thermal analysis model is presented for a micro-channel heat sink packaged semiconductor laser diode array(LDA). The transient and steady-state temperature distribution of the laser diode array is simulated when it works under the condition of 20% high duty cycle. It is found that the temperature of the active region rises slowly within the first few dozen microseconds after turning on current. And then,the temperature rises rapidly due to the heat flux interleaving between adjacent emitters,and finally a steady state is reached due to the thermal relaxation and accumulation effect. The static temperature distribution presents periodicity as the same of the array structure and no temperature difference exists among each emitter. The temperature rising concentrates in the electrode region of the active layer,and the temperature drops rapidly in the insulated region. The emitting facet has a higher temperature,and a max 3 K temperature difference exists along the cavity when the working current is 180 A. The output characteristic of the laser diode array is measured when it works under different currents. The temperature rising of the active region and the steady-state thermal resistance are basically coincident with the simulation.
参考文献

[1] . G. Endriz,M. Vakili,G. S. Browder et al.. High power diode laser arrays[J]. IEEE J. Quant. Electron., 1992, 28(4): 952-965.

[2] Harald Knig,Günther Grnninger,Peter Brick et al.. Brilliant high power laser bars for industrial applications[C]. SPIE,2008,6876:687616

[3] 单肖楠,张晶,王立军. 980 nm大功率半导体激光治疗仪的设计[J]. 中国激光,2006,33(增刊):435-438

    Shan Xiaonan,Zhang Jing,Wang Lijun. Design of 980 nm high-power semiconductor laser therapeutic equipment[J]. Chinese J. Lasers,2006,33(s):435-438

[4] . J. Yi,J. Diaz,I. Eliashevich et al.. Temperature dependence of threshold current density Jth and differential efficiency ηd of high-power InGaAsP/GaAs(λ=808 nm) lasers[J]. Appl. Phys. Lett., 1995, 66(3): 253-255.

[5] . M. Rommel,P. Gavrilovic,F. P. Dabkowski. Photoluminescence measurement of the facet temperature of 1 W gain-guided AlGaAs/GaAs laser diodes[J]. J. Appl. Phys., 1996, 80(11): 6547-6549.

[6] . W. Epperlein,G. L. Bona,P. Roentgen. Local mirror temperatures of red-emitting (Al)GaInP quantum-well laser diodes by Raman scattering and reflectance modulation measurements[J]. Appl. Phys. Lett., 1992, 60(6): 680-682.

[7] . Tomm,Fritz Weik,Thomas Elsaesser et al.. Analysis of thermal images from diode lasers:temperature profiling and reliability screening[J]. Appl. Phys. Lett., 2005, 86(203503): 1-3.

[8] . . Transient thermal behavior of high power diode laser arrays[J]. IEEE Transactions on Components,Packaging and Manufacturing Tchnology, 2000, 23(1): 95-100.

[9] 谢红云,陈国鹰,安振峰 等. 大功率半导体激光器阵列稳态温度分布分析[J]. 半导体学报,2003,24(10):1084-1088

    Xie Hongyun,Chen Guoying,An Zhenfeng et al.. Temperature distribution analysis of high power laser arrays in static working condition [J]. Chinese J. Semiconductors,2003,24(10):1084-1088

[10] 胡黎明,李再金,秦莉 等. 大功率无铝量子阱半导体激光列阵特性研究[J]. 中国激光,2010,37(2):379-384

    Hu Liming,Li Zaijin,Qin Li et al.. Characteristics of high power al-free quantum-well laser diode array[J]. Chinese J. Lasers,2010,37(2):379-384

[11] . 阵列式半导体激光器中的热特性[J]. 通讯学报, 1990, 11(5): 34-38.

    . The thermal effects in semiconductor laser arrays[J]. J. on Communications, 1990, 11(5): 34-38.

[12] . A simple new laser diode array model for thermal interaction analysis[J]. J. Appl. Phys., 1991, 70(9): 4715-4723.

[13] 张蕾,崔碧峰,黄宏娟 等. 焊料空隙对条形量子阱激光器温度分布的影响[J]. 中国激光,2007,34(9):1203-1207

    Zhang Lei,Cui Bifeng,Huang Hongjuan et al.. Steady-state temperature distribution changes of stripe quantum well laser caused by solder void[J]. Chinese J. Lasers,2007,34(9):1203-1207

[14] . Manning. Thermal impedance of diode lasers:comparison of experimental methods and a theoretical model[J]. J. Appl. Phys., 1981, 52(5): 3179-3184.

[15] . B. Joyce,R. W. Dixon. Thermal resistance of heterostructure lasers[J]. J. Appl. Phys., 1975, 46: 855-862.

[16] 宋海鹏,温继敏,曾雄文 等. 测量激光器结温的脉冲注入法研究[J]. 中国激光,2005,32(3):407-410

    Song Haipeng,Wen Jimin,Zeng Xiongwen et al.. Research of pulse injection method for measuring LD chip temperature[J]. Chinese J. Lasers,2005,32(3):407-410

胡黎明, 李再金, 秦莉, 杨晔, 王烨, 刘云, 王立军. 高占空比大功率半导体激光线阵热特性分析[J]. 光学学报, 2010, 30(4): 1055. Hu Liming, Li Zaijin, Qin Li, Yang Ye, Wang Ye, Liu Yun, Wang Lijun. Thermal Analysis of High-Power,High-Duty-Cycle Laser Diode Array[J]. Acta Optica Sinica, 2010, 30(4): 1055.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!