中国激光, 2018, 45 (2): 0207008, 网络出版: 2018-02-28   

肿瘤微环境响应的智能纳米载体在肿瘤光动力治疗中的应用 下载: 1642次特邀综述

Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers
蓝善优 1,2张达 1,3刘小龙 1,3曾永毅 1,4,*
作者单位
1 福建医科大学孟超肝胆医院, 福建 福州 350025
2 福建医科大学, 福建 福州350025
3 福建省肝病科学研究中心, 福建 福州350025
4 福建医科大学附属第一医院, 福建 福州 350005
引用该论文

蓝善优, 张达, 刘小龙, 曾永毅. 肿瘤微环境响应的智能纳米载体在肿瘤光动力治疗中的应用[J]. 中国激光, 2018, 45(2): 0207008.

Lan Shanyou, Zhang Da, Liu Xiaolong, Zeng Yongyi. Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207008.

参考文献

[1] 杨曼, 邢力允, 高卫栋, 等. 锌酞菁体外光动力学疗法体外抗肿瘤细胞量效关系[J]. 中国激光, 2017, 44(3): 0307001.

    Yang M, Xing L Y, Gao W D, et al. Dose-effect relationship of ZnPc-PDT on tumor cells in vitro[J]. Chinese Journal of Lasers, 2017, 44(3): 0307001.

[2] Sazgarnia A, Montazerabadi A R. Bahreyni-Toosi M H, et al. In vitro survival of MCF-7 breast cancer cells following combined treatment with ionizing radiation and mitoxantrone-mediated photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 2013, 10(1): 72-78.

[3] Huang Q, Ou Y S, Tao Y, et al. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells[J]. Apoptosis, 2016, 21(6): 749-760.

[4] Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1627-1637.

[5] Vemula P K, Cruikshank G A, Karp J M, et al. Self-assembled prodrugs: An enzymatically triggered drug-delivery platform[J]. Biomaterials, 2009, 30(3): 383-393.

[6] 王诗淼, 王晶, 刘军, 等. 不同长径比金纳米双锥对光敏剂荧光和光动力疗法效果的增强[J]. 中国激光, 2017, 44(6): 0607003.

    Wang S M, Wang J, Liu J, et al. Fluorescence intensity and photon dynamic treatment enhancement of Au NBPs with different aspect ratios to photosensitizer[J]. Chinese Journal of Lasers, 2017, 44(6): 0607003.

[7] Li S, Su Z, Sun M, et al. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery[J]. International Journal of Pharmaceutics, 2012, 436(1/2): 248-257.

[8] 张艳惠, 管庆霞, 吕邵娃, 等. 纳米载体传递抗肿瘤药物在肿瘤微环境的靶向性及应用研究进展[J]. 现代肿瘤医学, 2014, 22(12): 2997-3001.

    Zhang Y H, Guan Q X, Lü S W, et al. Research progress and application of nanometer carrier transmission anticancer drugs targeted the tumor microenvironment[J]. Journal of Modern Oncology, 2014, 22(12): 2997-3001.

[9] Liu K, Xing R, Zou Q, et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie, 2016, 55(9): 3036-3039.

[10] Ke G, Zhu Z, Wang W, et al. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15329-15334.

[11] Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy[J]. ACS Applied Materials & Interfaces, 2015, 7(20): 10671-10676.

[12] Aggelidou C, Theodossiou T A, Goncalves A R, et al. A versatile δ-aminolevulinic acid (ALA)-cyclodextrin bimodal conjugate-prodrug for PDT applications with the help of intracellular chemistry[J]. Beilstein Journal of Organic Chemistry, 2014, 10(1): 2414-2420.

[13] Zhang Z, Wang S, Xu H, et al. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer[J]. Journal of Biomedical Optics, 2015, 20(5): 051043.

[14] Tong H, Wang Y, Li H, et al. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy[J]. Chemical Communications, 2016, 52(20): 3966-3969.

[15] Wang Y, Wang H, Chen Y, et al. Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery[J]. Chemical Communications, 2013, 49(64): 7123-7125.

[16] Jin E, Zhang B, Sun X, et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. Journal of the American Chemical Society, 2013, 135(2): 933-940.

[17] Kondo E, Saito K, Tashiro Y, et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems[J]. Nature Communications, 2012, 3(1): 951.

[18] Etrych T, Subr V, Laga R, et al. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours[J]. European Journal of Pharmaceutical Sciences, 2014, 58: 1-12.

[19] Rikkou M D, Patrickios C S. Polymers prepared using cleavable initiators: Synthesis, characterization and degradation[J]. Progress in Polymer Science, 2011, 36(8): 1079-1097.

[20] Ma N, Li Y, Xu H, et al. Dual redox responsive assemblies formed from diselenide block copolymers[J]. Journal of the American Chemical Society, 2010, 132(2): 442-443.

[21] Zeng X, Zhou X, Li M, et al. Redox poly (ethylene glycol)-b-poly(L-lactide) micelles containing diselenide bonds for effective drug delivery[J]. Journal of Materials Science Materials in Medicine, 2015, 26(9): 234.

[22] Chen W, Zheng M, Meng F, et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins[J]. Biomacromolecules, 2013, 14(4): 1214-1222.

[23] Lin D, Jiang Q, Cheng Q, et al. Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery[J]. Acta Biomaterialia, 2013, 9(8): 7746-7757.

[24] Zhang A, Zhang Z, Shi F, et al. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery[J]. Macromolecular Bioscience, 2013, 13(9): 1249-1258.

[25] Baldwina A D, Kiick K L. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels[J]. Polymer Chemistry, 2013, 4(1): 133-143.

[26] Mari C, Pierroz V, Ferrari S, et al. Combination of Ru(II) complexes and light: New frontiers in cancer therapy[J]. Chemical Science, 2015, 6(5): 2660-2686.

[27] Wang T, Zabarska N, Wu Y, et al. Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications[J]. Chemical Communications, 2015, 51(63): 12552-12555.

[28] Sun L C, Coy D H. Somatostatin receptor-targeted anti-cancer therapy[J]. Current Drug Delivery, 2011, 8(1): 2-10.

[29] Tao W. Ng D Y W, Wu Y, et al. Bis-sulfide bioconjugates for glutathione triggered tumor responsive drug release[J]. Chemical Communications, 2014, 50(9): 1116-1118.

[30] Brocchini S, Balan S, Godwin A, et al. PEGylation of native disulfide bonds in proteins[J]. Nature Protocols, 2006, 1(5): 2241-2252.

[31] Brocchini S, Godwin A, Balan S, et al. Disulfide bridge based PEGylation of proteins[J]. Advanced Drug Delivery Reviews, 2008, 60(1): 3-12.

[32] 张文佳, 胡祥龙. 喜树碱聚前药纳米粒子包埋吲哚箐绿用于化疗与光动力联合抗肿瘤治疗[J]. 激光生物学报, 2016, 25(6): 520-522.

    Zhang W J, Hu X L. Tumor photodynamic and chemical combination therapy based on ICG loaded camptothecin polyprodrug nanoparticles[J]. Acta Laser Biology Sinica, 2016, 25(6): 520-522.

[33] Amici A, Levine R L, Tsai L, et al. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions[J]. Journal of Biological Chemistry, 1989, 264(6): 3341-3346.

[34] Ghadiali J E, Stevens M M. Enzyme-responsive nanoparticle systems[J]. Advanced Materials, 2010, 20(22): 4359-4363.

[35] Sun H, Benjaminsen R V, Almdal K, et al. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells[J]. Bioconjugate Chemistry, 2012, 23(11): 2247-2255.

[36] Jang B, Choi Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy[J]. Theranostics, 2012, 2(2): 190-197.

[37] Almog N, Ma L, Schwager C, et al. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype[J]. Plos One, 2012, 7(8): e44001.

[38] Dulkeith E, Ringler M, Klar T A, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression[J]. Nano Letters, 2005, 5(4): 585-589.

[39] Jain P K, Lee K S. El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine[J]. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.

[40] Zhang Y, Shen T T, Zhang H L, et al. A multifunctional nanocomposite for luminescence resonance energy transfer-guided synergistic monitoring and therapy under single near infrared light[J]. Chemical Communications, 2016, 52(27): 4880-4883.

[41] Wang L, Liu Y, Li W, et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy[J]. Nano Letters, 2011, 11(2): 772-780.

[42] Zhang Y, Shen T T, Kirillov A M. et al. NIR light/H2O2-triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells[J]. Chemical Communications, 2016, 52(51): 7939-7942.

[43] Wu D, Song G, Li Z, et al. A two-dimensional molecular beacon for mRNA-activated intelligent cancer theranostics[J]. Chemical Science, 2015, 6(7): 3839-3844.

[44] Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Archives of Biochemistry and Biophysics, 2003, 417(1): 3-11.

[45] Gupta S C, Hevia D, Patchva S, et al. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy[J]. Antioxidants & Redox Signaling, 2012, 16(11): 1295-1322.

[46] 刘艳红, 周建平, 霍美蓉. 肿瘤微环境响应型智能纳米药物载体的研究进展[J]. 中国药科大学学报, 2016, 47(2): 125-133.

    Liu Y H, Zhou J P, Huo M R. Advances in the tumor microenviroment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 2016, 47(2): 125-133.

[47] Kim H, Kim Y, Kim I H, et al. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages[J]. Theranostics, 2013, 4(1): 1-11.

[48] Hamblin M R, Miller J L, Rizvi I, et al. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer[J]. Cancer Research, 2001, 61(19): 7155-7162.

[49] Yue C, Zhang C, Alfranca G, et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy[J]. Theranostics, 2016, 6(4): 456-469.

[50] 何玉玲. 肿瘤微环境响应性纳米载体用于药物和基因输送的研究[D]. 兰州: 兰州大学, 2013.

    He YL. Environment-responsive nanocarriers for drug and gene delivery to cancer cells[D]. Lanzhou: Lanzhou University, 2013.

[51] Zhang D, Zheng A, Li J, et al. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma[J]. Theranostics, 2017, 7(1): 164-179.

蓝善优, 张达, 刘小龙, 曾永毅. 肿瘤微环境响应的智能纳米载体在肿瘤光动力治疗中的应用[J]. 中国激光, 2018, 45(2): 0207008. Lan Shanyou, Zhang Da, Liu Xiaolong, Zeng Yongyi. Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207008.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!