光学学报, 2017, 37 (5): 0516002, 网络出版: 2017-05-05   

AlN1-xPx合金电子结构及光学性质的第一性原理研究 下载: 542次

First-Principles Study of Electronic Structure and Optical Property of AlN1-xPx Alloys
作者单位
西南大学材料与能源学部, 重庆400715
摘要
基于密度泛函理论第一性原理的平面波超软赝势, 采用广义梯度近似及Heyd-Scuseria-Ernzerhof 03 (HSE03)方法对能带及态密度进行修正, 研究了AlN1-xPx(x=0, 0.25, 0.50, 0.75, 1)合金的晶体结构、电子结构和光学性质。结果表明, 随P含量的增加, AlN1-xPx晶格常数呈线性递增趋势, AlN1-xPx(x=0, 0.25, 0.75, 1)属于立方晶系, 而AlN0.50P0.50属于四方晶系。AlN1-xPx带隙随P含量的增加呈先减后增趋势, AlN和AlP是间接带隙半导体, 而AlN1-xPx(x=0.25, 0.50, 0.75)属于直接带隙半导体。P的存在破坏了AlN原本的本征值和简并态, 改变了电子能带结构。随P含量的增加, AlN1-xPx的光学性质曲线向低能区移动, 介电函数虚部的次强峰逐渐消失。AlN1-xPx合金对紫外光具有较强吸收, P的存在拓宽了可见光吸收范围。
Abstract
Based on the plane-wave ultra-soft pseudo-potential in the first-principles of density functional theory and by using the generalized gradient approximation and the Heyd-Scuseria-Ernzerhof 03 (HSE03) method to correct the energy bands and density of states, the crystal structure, the electronic structure and the optical property of AlN1-xPx (x=0, 0.25, 0.50, 0.75, 1) alloys are studied. The results show that the lattice constant of AlN1-xPx alloys increases linearly as the P component increases. AlN1-xPx (x=0, 0.25, 0.75, 1) alloys are of the cubic system, while AlN0.50P0.50 alloy belongs to the tetragonal system. The band gap of AlN1-xPx alloys firstly decreases and then increases as the P component increases. AlN and AlP alloys are the indirect band gap semiconductors, while AlN1-xPx (x=0.25, 0.50, 0.75) alloys belong to the direct band gap semiconductors. The presence of P destroys the original eigenvalues and the degenerate states of AlN, and changes the electronic band structures. As the P component increases, the optical characteristic curves of AlN1-xPx move towards the low energy region, and the subsidiary strong peaks of the imaginary parts of dielectric functions gradually fade away. AlN1-xPx alloys can absorb the ultraviolet light strongly and the presence of P can broaden the absorption region of visible light.
参考文献

[1] 陈 翔, 邢艳辉, 韩 军, 等. AlN隔离层对MOCVD制备的AlGaN/AlN/GaN HEMT材料电学性质的影响[J]. 中国激光, 2013, 40(6): 0606005.

    Chen Xiang, Xing Yanhui, Han Jun, et al. Influence of AlN interfacial layer on electrical properties of AlGaN/AlN/GaN HEMT materials grown by MOCVD[J]. Chinese J Lasers, 2013, 40(6): 0606005.

[2] 袁 娣, 罗华锋, 黄多辉, 等. Zn, O共掺杂实现p型AlN的第一性原理研究[J]. 物理学报, 2011, 60(7): 077101.

    Yuan Di, Luo Huafeng, Huang Duohui, et al. First-principles study of Zn, O codoped p-type AlN[J]. Acta Physica Sinica, 2011, 60(7): 077101.

[3] Wright A F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN[J]. Journal of Applied Physics, 1997, 82(6): 2833-2839.

[4] O′Leary S K, Foutz B E, Shur M S, et al. Steady-state and transient electron transport within the III-V nitride semiconductors, GaN, AlN, and InN: A review[J]. Journal of Materials Science, 2006, 17(2): 87-126.

[5] 廉瑞凯, 李 林, 范亚明, 等. 预辅Al及AlN缓冲层厚度对GaN/Si(111)材料特性的影响[J]. 中国激光, 2013, 40(1): 0106001.

    Lian Ruikai, Li Lin, Fan Yaming, et al. Effects of AlN buffer layer thickness and Al pre-treatment on properties of GaN/Si(111) epilayer[J]. Chinese J Lasers, 2013, 40(1): 0106001.

[6] 李泽涛, 党随虎, 李春霞. 高压下AlN的电子结构和光学性质[J]. 原子与分子物理学报, 2011, 28(6): 1123-1129.

    Li Zetao, Dang Suihu, Li Chunxia. Electronic structure and optical properties of AlN under high pressure[J]. Journal of Atomic and Molecular Physics, 2011, 28(6): 1123-1129.

[7] Madouri D, Boukra A, Zaoui A, et al. Bismuth alloying in GaAs: A first-principles study[J]. Computational Materials Science, 2008, 43(4): 818-822.

[8] Saib S, Bouarissa N, Rodríguez-Hernández P, et al. First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN[J]. Journal of Applied Physics, 2008, 103(1): 013506.

[9] Jiao Z Y, Ma S H, Yang J F. A comparison of the electronic and optical properties of zinc-blende, rocksalt and wurtzite AlN: A DFT study[J]. Solid State Sciences, 2011, 13(2): 331-336.

[10] Gleize J, Renucci M A, Frandon J, et al. Phonon deformation potentials of wurtzite AlN[J]. Journal of Applied Physics, 2003, 94(4): 2065-2068.

[11] 耶红刚, 陈光德, 竹有章, 等. 六方AlN本征缺陷的第一性原理研究[J]. 物理学报, 2007, 56(9): 5376-5381.

    Ye Honggang, Chen Guangde, Zhu Youzhang, et al. First principle study of the native defects in hexagonal aluminum nitride[J]. Acta Physica Sinica, 2007, 56(9): 5376-5381.

[12] Jain S C, Willander M, Narayan J, et al. III-nitrides: Growth, characterization, and properties[J]. Journal of Applied Physics, 2000, 87(3): 965-1006.

[13] Cheng Y C, Wu X A, Zhu J, et al. Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations[J]. Journal of Applied Physics, 2008, 103(7): 073707.

[14] Verma U P, Bisht P S. Ab-initio study of AlN in zinc-blende and rock-salt phases[J]. Solid State Sciences, 2010, 12(5): 665-669.

[15] Pang W Y, Lo I, Wu S, et al. Growth of wurtzite and zinc-blende phased GaN on silicon (100) substrate with sputtered AlN buffer layer[J]. Journal of Crystal Growth, 2013, 382(11): 1-5.

[16] Bürger M, Ruth M, Declair S, et al. Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots[J]. Applied Physics Letters, 2013, 102(8): 081105.

[17] Souraya G S, Mohammed B K, Abdelkarim E M, et al. Prediction of structural and thermodynamic properties of zinc-blende AlN: Molecular dynamics simulation[J]. Chemical Physics, 2004, 302(1-3): 135-141.

[18] 刘军林, 熊传兵, 程海英, 等. AlN插入层对硅衬底GaN薄膜生长的影响[J]. 光学学报, 2014, 34(2): 0231003.

    Liu Junlin, Xiong Chuanbing, Cheng Haiying, et al. Effects of AlN interlayer on growth of GaN films on silicon substrate[J]. Acta Optica Sinica, 2014, 34(2): 0231003.

[19] 郑畅达, 王 立, 方文卿, 等. ZnO/AlN/Si(111)薄膜的外延生长和性能研究[J]. 光学学报, 2006, 26(3): 436-466.

    Zheng Changda, Wang Li, Fang Wenqing, et al. The growth and properties of ZnO film grown on Si(111) substrate with AlN buffer by MOCVD[J]. Acta Optica Sinica, 2006, 26(3): 436-466.

[20] Djoudi L, Lachebi A, Merabet B, et al. First-principles investigation of structural and electronic properties of the BxGa1-xN, BxAl1-xN, AlxGa1-xN, and BxAlyGa1-x-yN compounds[J]. Acta Physica Polonica A, 2012, 122(4): 748-753.

[21] 丁维清, 林振金, 杨锡振, 等. GaAs1-xPx: N间接能隙材料的光致发光谱[J]. 北京师范大学学报, 1981, 2: 59-66.

    Ding Weiqing, Lin Zhenjin, Lin Xizhen, et al. Photoluminescence spectrum method on N-implanted GaAs1-xPx in the indirect bandgap region[J]. Journal of Beijing Normal University, 1981, 2: 59-66.

[22] Selviga E, Fimlanda B O, Skaulib T, et al. Calibration of the arsenic mole fraction in MBE grown GaAsySb1-y and AlxGa1-xAsySb1-y (y<0.2)[J]. Journal of Crystal Growth, 2011, 227: 562-565.

[23] Marbeuf A, Karouta F, Dexpert H, et al. Exafs study of a quite relaxed zinc-blende lattice: The GaAsySb1-y alloy (in French)[J]. Le Journal De Physique Colloques, 1986, 47(C-8): 369-373.

[24] Gao H C, Yin Z J, Cheng W, et al. Photoluminescence investigation on highly p+-doped GaAs1-ySby (y<0.3)[J]. Science China Technological Sciences, 2012, 55(11): 3200-3203.

[25] Hall E L, Germano C A, Berg H M. Investigation of GaAs1-xPx crystals using the pseudo-Kossel X-ray and photoluminescence techniques[J]. Journal of Electronic Materials, 1976, 5(1): 37-56.

[26] Mbarki M, Alaya R, Rebey A. Ab initio investigation of structural and electronic properties of zinc blende AlN1-xBix alloys[J]. Solid State Communications, 2013, 155(2): 12-15.

[27] Zhu Y, Clavel M, Goley P. Growth, strain relaxation properties and high-κ dielectric integration of mixed-anion GaAs1-ySby metamorphic materials[J]. Journal of Applied Physics, 2014, 116(13): 786-790.

[28] Ji X H, Lau S P, Yu S F, et al. Ferromagnetic Cu-doped AlN nanorods[J]. Nanotechnology, 2007, 18(10): 105601.

[29] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[30] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

[31] Mori-Sanchez P, Cohen A J, Yang W. Localization and delocalization errors in density functional theory and implications for band-gap prediction[J]. Physical Review Letters, 2008, 100(14): 146401.

[32] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.

[33] Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome (in German)[J]. Zeits chrift für Physik, 1921, 5(1): 17-26.

[34] 郭永亮, 焦照勇, 马淑红, 等. 闪锌矿结构AlN、AlP、AlAs和AlSb电子结构和光学性质的第一性原理研究[J]. 原子与分子物理学报, 2013, 30(4): 670-676.

    Guo Yongliang, Jiao Zhaoyong, Ma Shuhong, et al. First-principles study of the electronic and optical properties of zinc-blende AlN, AlP, AlAs and AlSb[J]. Journal of Atomic and Molecular Physics, 2013, 30(4): 670-676.

[35] Huang M Z, Ching W Y. Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response[J]. Physical Review B, 1993, 47(15): 9449-9463.

[36] Saha S, Sinha T P, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Physical Review B, 2000, 62(13): 8828-8834.

[37] 沈学础. 半导体光谱和光学性质[M]. 北京: 科学出版社, 1992: 76-94.

    Shen Xuechu. The spectrum and optical property of semiconductor[M]. Beijing: Science Press, 1992: 76-94.

[38] 闫万珺, 张忠政, 郭笑天, 等. 第一性原理计算V-Al共掺杂CrSi2的光电特性[J]. 光学学报, 2014, 34(4): 0416002.

    Yan Wanjun, Zhang Zhongzheng, Guo Xiaotian, et al. Principles calculation on the photoelectric properties of V-Al co-doped CrSi2[J]. Acta Optica Sinica, 2014, 34(4): 0416002.

[39] 方容川. 固体光谱学[M]. 合肥: 中国科学技术大学出版社, 2001: 71-75.

    Fang Rongchuan. Solid state spectroscopy[M]. Hefei: University of Science and Technology Press, 2001: 71-75.

侯嘉慧, 贺达芳, 陈晶晶, 李春梅, 程南璞. AlN1-xPx合金电子结构及光学性质的第一性原理研究[J]. 光学学报, 2017, 37(5): 0516002. Hou Jiahui, He Dafang, Chen Jingjing, Li Chunmei, Cheng Nanpu. First-Principles Study of Electronic Structure and Optical Property of AlN1-xPx Alloys[J]. Acta Optica Sinica, 2017, 37(5): 0516002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!