强激光与粒子束, 2012, 24 (9): 2053, 网络出版: 2012-09-12   

微结构表面封闭式喷雾冷却传热特性

Heat transfer characteristics in closed-loop spray cooling of micro-structured surfaces
作者单位
中国石油大学 储运与建筑工程学院, 山东 青岛 266555
摘要
以蒸馏水为工质,在闭式循环喷雾冷却系统上,变化喷雾流量,研究了表面几何结构对喷雾传热性能的影响。从对流换热和相变换热比例关系的角度,对喷雾换热机理进行了实验研究。结果表明:与光滑表面相比,微结构表面可明显增强喷雾换热强度,这主要归因于相变换热的增强。表面温度较低时,直肋面换热效果最好;增大流量,光面换热增强,而直肋面变化不明显。表面温度较高时,方肋面换热效果最好;随着流量增大,所有面换热均增强。对于微结构表面,相变换热份额均大于50%,故而以相变换热为主;而光滑表面,即使在温度较低时,相变换热份额也大于20%。临界热流密度与三相接触线长度正相关,流量为15.9 mL/min时,方肋面、直肋面和光面的临界热流密度依次为159.1,120.2,109.8 W/cm2,蒸发效率分别为96.0%,725%,67.1%。
Abstract
With water as the working fluid, experiments on the heat transfer characteristics of spray cooling of micro-structured surfaces were performed in a closed loop system. Experimental data were analyzed in the view of the ratio between convective heat transfer and phase change heat transfer. The results indicate that heat transfer is obviously enhanced for micro-channel surfaces relative to the flat surface because of higher phase change heat transfer. For the geometries tested at lower surface temperature, the straight finned surface has the largest heat flux; while at higher surface temperature, the cubic pin finned surface has the largest heat flux. Heat fluxes of all the surfaces grow with increasing flow rates, except for the straight finned surface under lower surface temperature. The ratio of phase change to total heat transfer is bigger than 20% for the flat surface, and higher than 50% for micro-structured surfaces. Critical heat fluxes of 159.1, 120.2, and 109.8 W/cm2 are attained for cubic pin finned, straight finned and flat surfaces respectively when the flow rate is 15.9 mL/min, and the corresponding evaporation efficiencies are 96.0%, 72.5%, 67.1%.
参考文献

[1] 李德睿,王文.实心圆锥喷嘴喷雾单相区冷却性能模拟研究[J].流体机械, 2010, 38(6):64-68.(Li Derui, Wang Wen. Simulation of full cone nozzle spray cooling performance in single phase. Fluid Machinery, 2010, 38(6):64-68)

[2] 周乐平,唐大伟,杜小泽,等.大功率激光武器及其冷却系统[J].激光与光电子学进展, 2007, 44(8):34-38.(Zhou Leping, Tang Dawei, Du Xiaoze, et al. High power laser weapons and their cooling systems. Laser and Optoelectronics Progress, 2007, 44(8):34-38)

[3] 武德勇,高松信,吕文强,等.激光二极管高效铜微通道冷却器设计[J].强激光与粒子束, 2004, 16(7):840-842.(Wu Deyong, Gao Songxin, Lü Wenqiang, et al. Design of high efficient copper micro-channels cooler for diode laser. High Power Laser and Particle Beams, 2004, 16(7):840-842)

[4] Kim J. Spray cooling heat transfer: The state of art[J]. International Journal of Heat and Fluid Flow, 2007, 28(1):753-767.

[5] 王亚青,刘明侯,刘东,等.高功率激光器喷雾冷却的实验研究[J].强激光与粒子束, 2009, 21(12):1761-1766.(Wang Yaqing, Liu Minghou, Liu Dong, et al. Experiment study on spray cooling for high-power laser. High Power Laser and Particle Beams, 2009, 21(12):1761-1766)

[6] Chen R, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(2):4033-4043.

[7] Chen R, Chow L C, Navedo J E. Optimal spray characteristics in water spray cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(9):5095-5099.

[8] Daniel P R, Chen R, Chow L C. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J]. Journal of Heat Transfer, 2002, 124(5):63-72.

[9] Chen R, Tan D S, Lin K C, et al. Droplet and bubble dynamics in saturated FC-72 spray cooling on a smooth surface[J]. Journal of Heat Transfer, 2008, 130(1):1-9.

[10] 王亚青,刘明侯,刘东,等.大功率激光器喷雾冷却中无沸腾区换热性能实验研究[J].中国激光, 2009, 36(8):1973-1978.(Wang Yaqing, Liu Minghou, Liu Dong, et al. Experiment study on non-boiling heat transfer performance in spray cooling for high-power laser. Chinese Journal of Lasers, 2009, 36(8):1973-1978)

[11] Visaria M, Mudawar I. Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2008, 51(1):2398-2410.

[12] Mudawar I, Estes K. Optimizing and predicting CHF in spray cooling of a square surface[J]. Journal of Heat Transfer, 1996, 118(7):672-679.

[13] Pais M, Chow L C, Maheikey E. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Journal of Heat Transfer, 1992, 114(1):211-219.

[14] Hsieh C, Yao S C. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J]. International Journal of Heat and Mass Transfer, 2006, 49(3):962-974.

[15] Silk E A, Kim J, Kiger K. Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination[J]. International Journal of Heat and Mass Transfer, 2006, 49(10):4910-4920.

[16] Christof S, Peter S. Spray cooling on micro structured surfaces[J]. International Journal of Heat and Mass Transfer, 2007, 50(6):4089-4097.

[17] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社, 2006:316-318.(Yang Shiming, Tao Wenquan. Heat transfer. Beijing: Higher Education Press, 2006:316-318)

[18] Tan S W, Lin K C, Chow L, et al. Simulation of spray cooling systems with phase chang[J]. International Journal of Heat and Mass Transfer, 2007, 50(9):862-868.

[19] Yang J, Pais M, Chow L. Critical heat flux limits in secondary gas atomized liquid spray cooling[J]. Heat Transfer, 1993, 6(12):55-67.

[20] Yang J, Chow L, Pais M. Nucleate boiling heat transfer in spray cooling[J]. Heat Transfer, 1996, 118(5):668-671.

[21] Coursey J S, Kim J, Kiger K T. Spray cooling of high aspect ratio open microchannels[J].Transactions of the ASME, 2007, 129(8):1052-1059.

[22] Qiao Y M, Chandra S. Spray cooling enhancement by addition of a surfactant[J]. Journal of Heat Transfer, 1998, 120(4):92-98.

[23] Horacek B, Kiger K T. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(6):1425-1438.

张伟, 王照亮, 徐明海. 微结构表面封闭式喷雾冷却传热特性[J]. 强激光与粒子束, 2012, 24(9): 2053. Zhang Wei, Wang Zhaoliang, Xu Minghai. Heat transfer characteristics in closed-loop spray cooling of micro-structured surfaces[J]. High Power Laser and Particle Beams, 2012, 24(9): 2053.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!