中国激光, 2013, 40 (10): 1002009, 网络出版: 2013-09-17   

一种新型的基于PPLN的多波长中红外激光光源

A Novel Multi-Wavelength Mid-Infrared Difference Frequency Generation Laser Source Based on PPLN
作者单位
南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
摘要
提出了一种新型的基于PPLN晶体的多波长中红外差频产生(DFG)光源的设计方案。针对1060 nm和1550 nm两个波段的基频光源组合,采用晶体的分段温度控制技术获得了具有多峰结构的抽运光/闲频光准相位匹配(QPM)调谐曲线。通过改变分段晶体的温度调控抽运光QPM峰的位置,实现中红外多波长DFG光源的调谐输出。理论研究结果显示当PPLN晶体分成长度相等的两个温度控制段,且信号光波长设定为1.58 \mm,分段晶体区间的温度分别设定为20 ℃和60 ℃时,抽运光波长区域存在4个QPM峰,对应的中红外闲频光QPM峰的中心波长分别位于2.95,3.03,3.75,3.83 μm处。当分段晶体区间的温度改变为50 ℃和90 ℃时,相应中红外闲频光QPM峰分别平移至3.01,3.11,3.67,3.77 μm处。该研究结果可为设计和研制多波长宽调谐中红外DFG光源提供参考。
Abstract
A novel difference frequency generation (DFG) scheme for simultaneously achieving multi-wavelength mid-infrared (mid-IR) emissions based on a bulk PPLN crystal is proposed. For the combination of 1060 nm and 1550 nm wavelength band fundamental light sources, multiple pump quasi-phase-matching (QPM) peaks can be obtained by using the segmented temperature controlling techniques on a PPLN chip. Moreover, the multiple pump QPM peaks can be widely tuned by adjusting the segmented crystal temperatures and thus the tunability for the generated multiple mid-IR wavelengths is realized. Our simulated results show that when the PPLN crystal are evenly divided into two sections for temperature controlling, four pump QPM peaks are simultaneously reached, corresponding to the mid-IR idler QPM peaks at 2.95, 3.03, 3.75, 3.83 μm, as the signal wavelength setting at 1.58 μm and the segmented crystal temperatures setting at 20 ℃ and 60 ℃, respectively. When the segmented crystal temperatures are adjusted to 50 ℃ and 90 ℃, the idler QPM peak positions in the mid-IR DFG output spectrum are changed to 3.01, 3.11, 3.67, 3.77 μm. Such results may provide reference and guidance for design and development of widely tunable multi-wavelength DFG light sources.
参考文献

[1] K P Petrov, R F Curl, F K Tittel. Compact laser difference frequency spectrometer for multicomponent trace gas detection[J]. Appl Phys B, 1998, 66(5): 531-538.

[2] 汪六三, 曹振松,王欢, 等. 宽调谐中红外差频激光及大气水汽浓度探测[J]. 光学学报, 2011, 31(4): 0414003.

    Wang Liusan, Cao Zhensong, Wang Huan, et al.. A widely tunable mid-infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 0414003.

[3] L Ciaffoni, R Grilli, G Hancock, et al.. 3.5-μm high-resolution gas sensing employing a LiNbO3 OPM-DFG waveguide module[J]. Appl Phys B, 2009, 94(3): 517-525.

[4] 姚文明, 檀慧明, 王帆, 等. 外腔全固态连续波PPMgLN光学参量振荡器与受激拉曼散射[J]. 中国激光, 2012, 39(12): 1202008.

    Yao Wenming, Tan Huiming, Wang Fan, et al.. Extra-cavity, all-solid-state continuous wave optical parametric oscillator and stimulated Raman scattering in PPMgLN[J]. Chinese J Lasers, 2012, 39(12): 1202008.

[5] 刘磊, 李宵, 肖虎, 等. 单频光纤激光器抽运的中红外连续单谐振光学参变振荡器[J]. 中国激光, 2012, 39(1): 0102001.

    Liu Lei, Li Xiao, Xiao Hu, et al.. Mid-infrared, singly resonant and continuous-wave optical parametric oscillator pumped by a single-frequency fiber laser[J]. Chinese J Lasers, 2012, 39(1): 0102001.

[6] 於杏燕, 戴世勋, 周亚训, 等. 掺铒硫系玻璃光纤的中红外增益特性模拟研究[J]. 中国激光, 2012, 39(1): 0105003.

    Yu Xingyan, Dai Shixun, Zhou Yaxun, et al.. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers[J]. Chinese J Lasers, 2012, 39(1): 0105003.

[7] M H Chou, K R Parameswaran, M M Fejer, et al.. Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides[J]. Opt Lett, 1999, 24(16): 1157-1159.

[8] Y W Lee, F C Fan, Y C Huang, et al.. Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate[J]. Opt Lett, 2002, 27(24): 2191-2193.

[9] O Bang, B Clausen, P L Christiansen, et al.. Engineering competing nonlinearities[J]. Opt Lett, 1999, 24(20): 1413-1415.

[10] M Asobe, O Tadanaga, H Miyazawa, et al.. Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion[J]. IEEE J Quantum Electron, 2005, 41(12): 1540-1547.

[11] M Asobe, O Tadanaga, T Umeki, et al.. Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device[J]. Opt Lett, 2007, 32(23): 3388-3390.

[12] J Jiang, J H Chang, S J Feng, et al.. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

[13] X M Liu, H Y Zhang, Y L Guo, et al.. Optimal design and applications for quasi-phase-matching three-wave mixing[J]. IEEE J Quantum Electron, 2002, 38(9): 1225-1233.

[14] D H Jundt. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Opt Lett, 1997, 22(20): 1553-1555.

[15] J H Chang, Q H Mao, S J Feng, et al.. Theoretical and experimental investigations of the mid-IR DFG tuning property based on fiber laser fundamental lights[J]. Appl Phys B, 2011, 104(4): 851-859.

常建华, 杨镇博, 陆洲, 董时超. 一种新型的基于PPLN的多波长中红外激光光源[J]. 中国激光, 2013, 40(10): 1002009. Chang Jianhua, Yang Zhenbo, Lu Zhou, Dong Shichao. A Novel Multi-Wavelength Mid-Infrared Difference Frequency Generation Laser Source Based on PPLN[J]. Chinese Journal of Lasers, 2013, 40(10): 1002009.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!