Frontiers of Optoelectronics, 2013, 6 (4): 359, 网络出版: 2014-03-03  

Monolithic all-solid-state dye-sensitized solar cells

Monolithic all-solid-state dye-sensitized solar cells
作者单位
1 Michael Gratzel Center for Mesoscopic Solar Cells,Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
As a low-cost photovoltaic technology, dyesensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most importance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.
参考文献

[1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

[2] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344

[3] Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Dyesensitized solar cells. Chemical Reviews, 2010, 110(11): 6595-6663

[4] Chiba Y, Islam A, Komiya R, Koide N, Han L Y. Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letters, 2006, 88(22): 223505-1-223505-3

[5] Han L Y, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S F, Yang X D, Yanagida M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Sciences, 2012, 5(3): 6057-6060

[6] Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gratzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629-634

[7] Hardin B E, Snaith H J, McGehee M D. The renaissance of dyesensitized solar cells. Nature Photonics, 2012, 6(3): 162-169

[8] Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Gratzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 2007, 15(1): 1-18

[9] Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO nanostructures for dye-sensitized solar cells. Advanced Materials, 2009, 21(41): 4087-4108

[10] Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44(1): 99-117

[11] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585

[12] Melas-Kyriazi J, Ding I K, Marchioro A, Punzi A, Hardin B E, Burkhard G F, Tetreault N, Gratzel M, Moser J E, McGehee M D. The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Advanced Energy Materials, 2011, 1(3): 407-414

[13] Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Gratzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters, 2007, 7(11): 3372-3376

[14] Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon CE. Energy & Environmental Sciences, 2011, 4(6): 2025-2029

[15] Han H W, Liu W, Zhang J, Zhao X Z. A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Advanced Functional Materials, 2005, 15(12): 1940-1944

[16] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647

[17] Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. All-solidstate dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399): 486-489

[18] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764-1769

[19] Han H W, Bach U, Cheng Y B, Caruso R A, MacRae C. A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 2009, 94(10): 103102-1-103102-3

[20] Skupien K, Putyra P, Walter J, Kozlowski R H, Khelashvili G. Catalytic materials manufactured by the polyol process for monolithic dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2009, 17(1): 67-73

[21] Liu G H, Wang H, Li X, Rong Y G, Ku Z L, Xu M, Liu L F, Hu M, Yang Y, Xiang P, Shu T, Han H W. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta, 2012, 69: 334-339

[22] Hinsch A, Behrens S, Berginc M, Bonnemann H, Brandt H, Drewitz A, Einsele F, Fabler D, Gerhard D, Gores H, Haag R, Herzig T, Himmler S, Khelashvili G, Koch D, Nazmutdinova G, Opara-Krasovec U, Putyra P, Rau U, Sastrawan R, Schauer T, Schreiner C, Sensfuss S, Siegers C, Skupien K, Wachter P, Walter J, Wasserscheid P, Wurfel U, Zistler M. Material development for dye solar modules: Results from an integrated approach. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 489-501

[23] Kruger J, Plass R, Cevey L, Piccirelli M, Gratzel M, Bach U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001, 79(13): 2085-2087

[24] Kruger J, Plass R, Gratzel M, Matthieu H J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Applied Physics Letters, 2002, 81(2): 367-369

[25] Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye. Applied Physics Letters, 2005, 86(1): 013504-1-013504-3

[26] Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Gratzel M. Organic dye for highly efficient solidstate dye-sensitized solar cells. Advanced Materials, 2005, 17(7): 813-815

[27] Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Gratzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters, 2011, 11(4): 1452-1456

[28] Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Gratzel M. Tris(2-(1H-pyrazol-1-yl)pyridine) cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2011, 133(45): 18042-18045

[29] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591

[30] Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Gratzel M. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Letters, 2010, 10(7): 2609-2612

[31] Zhu R, Jiang C Y, Liu B, Ramakrishna S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Advanced Materials, 2009, 21(9): 994-1000

[32] Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters, 2009, 9(12): 4250-4257

[33] Moon S J, Baranoff E, Zakeeruddin S M, Yeh C Y, Diau E W G, Gratzel M, Sivula K. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye. Chemical Communications (Cambridge), 2011, 47: 8244-8246

[34] Zhang W, Zhu R, Li F, Wang Q, Liu B. High-performance solidstate organic dye sensitized solar cells with P3HT as hole transporter. Journal of Physical Chemistry C, 2011, 115(14): 7038-7043

[35] Rong Y G, Li X, Ku Z L, Liu G H, Wang H, Xu M, Liu L F, Hu M, Xiang P, Zhou Z M, Shu T, Han H W. Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells, 2012, 105: 148-152

[36] Xu M, Liu G H, Li X, Wang H, Rong Y G, Ku Z L, Hu M, Yang Y, Liu L F, Liu T F, Chen J Z, Han H W. Efficient monolithic solidstate dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics, 2013, 14(2): 628-634

[37] Dai S Y,Wang K J,Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L. Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells, 2005, 85(3): 447-455

[38] Han L T, Fukui A, Chiba Y, Islam A, Komiya R, Fuke N, Koide N, Yamanaka R, Shimizu M. Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Applied Physics Letters, 2009, 94(1): 013305-1-013305-3

[39] Meyer T, Martineau D, Azarn A, Meyer A. All screen printed dye solar cell. Organic Photovoltaics VIII, 2007, 6656: 65608-1-65608-11

[40] Meyer T, Scott M, Azam A, Martineau D, Oswald F, Narbey S, Laporte G, Cisneros R, Tregnano G, Meyer A. CleanTechDay 3rd Generation Photovoltaics, CSEM, Basel, 18 August 2009

[41] Pettersson H, Gruszecki T. Long-term stability of low-power dyesensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells, 2001, 70(2): 203-212

[42] Pettersson H, Gruszecki T, Johansson L H, Johander P. Manufacturing method for monolithic dye-sensitised solar cells permitting longterm stable low-power modules. Solar Energy Materials and Solar Cells, 2003, 77(4): 405-413

[43] Pettersson H, Gruszecki T, Schnetz C, Streit M, Xu Y H, Sun L C, Gorlov M, Kloo L, Boschloo G, Haggman L, Hagfeldt A. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340-345

[44] Pettersson H, Gruszecki T, Bernhard R, Haggman L, Gorlov M, Boschloo G, Edvinsson T, Kloo L, Hagfeldt A. The monolithic multicell: a tool for testing material components in dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 113-121

[45] Rong Y G, Han H W. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon-counter electrodes. Journal of Nanophotonics, 2013, 7(1): 073090

[46] Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J. Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2001, 9(6): 425-438

Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2013, 6(4): 359. Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2013, 6(4): 359.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!