激光与光电子学进展, 2016, 53 (1): 010002, 网络出版: 2016-02-01  

自由电子激光场中原子分子实验研究进展 下载: 999次

Atomic and Molecular Experiments Progress in Free-Electron Laser Field
冯赫 1,2,*张逸竹 1江玉海 1,3
作者单位
1 中国科学院上海高等研究院, 上海 201210
2 中国科学院大学, 北京100049
3 上海科技大学物质科学与技术学院, 上海 201210
引用该论文

冯赫, 张逸竹, 江玉海. 自由电子激光场中原子分子实验研究进展[J]. 激光与光电子学进展, 2016, 53(1): 010002.

Feng He, Zhang Yizhu, Jiang Yuhai. Atomic and Molecular Experiments Progress in Free-Electron Laser Field[J]. Laser & Optoelectronics Progress, 2016, 53(1): 010002.

参考文献

[1] W Ackermann, G Asova, V Ayvazyan, et al.. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nat Photonics, 2007, 1(6): 336-342.

[2] DESY. Flash parameters[OL]. http://photon-science.desy.de/facilities/flash/flash_parameters/index_eng.html.

[3] T Shintake, H Tanaka, T Hara, et al.. A compact free- electron laser for generating coherent radiation in the extreme ultraviolet region[J]. Nat Photonics, 2008, 2(9): 555-559.

[4] T Ishikawa, H Aoyagi, T Asaka, et al.. A compact X-ray free-electron laser emitting in the sub-angstrom region[J]. Nature Photonics, 2012, 6(8): 540-544.

[5] M Yabashi, H Tanaka, T Tanaka, et al.. Compact XFEL and AMO sciences: SACLA and SCSS[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 8323-8331.

[6] P Emma, R Akre, J Arthur, et al.. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nat Photonics, 2010, 4(9): 641-647.

[7] SLAC. LCLS parameters[OL]. http://www-ssrl.slac.stanford.edu/lcls/users/proposals.html.

[8] E Allaria, R Appio, L Badano, et al.. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nat Photonics, 2012, 6(10): 699-704.

[9] Zhentang Zhao, Dong Wang. Development of X-ray free electron lasers[J]. Chinese J Lasers, 2010, 37(9): 2242-2252.

[10] 刘静, 舒挺, 张军. 欧洲自由电子激光研究进展[J]. 激光与光电子学进展, 2007, 44(6): 43-48.

    Liu Jing, Shu Ting, Zhang Jun. Research development on free electron laser in Europe[J]. Laser & Optoelectronics Progress, 2007, 44(6): 43-48.

[11] 白山. 真空紫外和X 射线自由电子激光器[J]. 激光与光电子学进展, 2003, 40(2): 23-28.

    Bai Shan. Extreme ultraviolet and X-ray free electron lasers[J]. Laser & Optoelectronics Progress, 2003, 40(2): 23-28.

[12] A Rudenko, L Foucar, M Kurka, et al.. Recoil-ion momentum distributions for two-photon double ionization of He and Ne by 44 eV free-electron laser radiation[J]. Phys Rev Lett, 2008, 101(7): 073003.

[13] R Moshammer, Y H Jiang, L Foucar, et al.. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses [J]. Phys Rev Lett, 2007, 98(20): 203001.

[14] A A Sorokin, S V Bobashev, T Feigl, et al.. Photoelectric effect at ultrahigh intensities[J]. Phys Rev Lett, 2007, 99(21): 213002.

[15] M Richter, M Y Amusia, S V Bobashev, et al.. Extreme ultraviolet laser excites atomic giant resonance[J]. Phys Rev Lett, 2009, 102(16): 163002.

[16] L Young, E P Kanter, B Krssig, et al.. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61.

[17] B Rudek, S K Son, D Rolles, et al.. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses[J]. Nat Photonics, 2012, 6(12): 1-8.

[18] A Yamada, H Fukuzawa, K Motomura, et al.. Ion-ion coincidence studies on multiple ionizations of N2 and O2 molecules irradiated by extreme ultraviolet free-electron laser pulses[J]. J Chem Phy, 2010, 132(20): 204305.

[19] Y H Jiang, A Rudenko, M Kurka, et al.. Few-photon multiple ionization of N2 by extreme ultraviolet free-electron laser radiation[J]. Phys Rev Lett, 2009, 102(12): 123002.

[20] Y H Jiang, T Pfeifer, A Rudenko, et al.. Temporal coherence effects in multiple ionization of N2 via XUV pump- probe autocorrelation[J]. Phys Rev A, 2010, 82(4): 5929-5937.

[21] T Sato, T Okino, K Yamanouchi, et al.. Dissociative two-photon ionization of N2 in extreme ultraviolet by intense selfamplified spontaneous emission free electron laser light[J]. Appl Phys Lett, 2008, 92(15): 154103.

[22] J P Cryan, J M Glownia, J Andreasson, et al.. Auger electron angular distribution of double core-hole states in the molecular reference frame[J]. Phys Rev Lett, 2010, 105(8): 083004.

[23] L Fang, M Hoener, O Gessner, et al.. Double core-hole production in N2: beating the Auger clock[J]. Phys Rev Lett, 2010, 105(8): 083005.

[24] L Fang, M Hoener, N Berrah. Ultra-intense X-ray induced non-linear processes in molecular nitrogen[J]. Journal of Physics: Conference Series, 2011, 288(1): 012019.

[25] A Rudenko, Y H Jiang, M Kurka, et al.. Exploring few- photon, few- electron reactions at FLASH: from ion yield and momentum measurements to time-resolved and kinematically complete experiments[J]. J Phys B at Mol Opt Phys, 2010, 43(19): 194004.

[26] Y H Jiang, A Rudenko, J F Pérez-Torres, et al.. Investigating two-photon double ionization of D2 by XUV-pump–XUVprobe experiments[J]. Phys Rev A, 2010, 81(5): 051402.

[27] K Schnorr, A Senftleben, M Kurka, et al.. Electron rearrangement dynamics in dissociating I2 molecules accessed by extreme ultraviolet pump-probe experiments[J]. Phys Rev Lett, 2014, 113(7): 073001.

[28] Y H Jiang, A Rudenko, O Herrwerth, et al.. Ultrafast extreme ultraviolet induced isomerization of acetylene cations[J]. Phys Rev Lett, 2010, 105(26): 263002.

[29] B Erk, R Boll, S Trippel, et al.. Imaging charge transfer in iodomethane upon X-ray photo absorption[J]. Science, 2014, 345(6194): 288-291.

[30] S T Pratt. Charge transfer goes the distance[J]. Science, 2014, 345(6194): 267-268.

[31] B Erk, D Rolles, L Foucar, et al.. Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules[J]. Phys Rev Lett, 2013, 110(5): 053003.

[32] Y H Jiang, A Rudenko, M Kurka, et al.. EUV-photon-induced multiple ionization and fragmentation dynamics: from atoms to molecules[J]. J Phys B at Mol Opt Phys, 2009, 42(13): 134012.

[33] J Feldhaus, M Krikunova, M Meyer, et al.. AMO science at the FLASH and European XFEL free-electron laser facilities[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164002.

[34] N Berrah, J Bozek, and J Costello, et al.. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)[J]. J Mod Opt, 2010, 57(12): 1015-1040.

[35] J Ullrich, A Rudenko, R Moshammer. Free-electron lasers: new avenues in molecular physics and photochemistry[J]. Annu Rev Phys Chem, 2012, 63: 635-660.

[36] L Fang, T Osipov, B F Murphy, et al.. Probing ultrafast electronic and molecular dynamics with free-electron lasers[J]. J Phys B at Mol Opt Phys, 2014, 47(12): 124006.

[37] H N Chapman, P Fromme, A Barty, et al.. Femtosecond X-ray protein nano crystallo graphy[J]. Nature, 2011, 470(7332): 73-77.

[38] M M Seibert, T Ekeberg, F R N C Maia, et al.. Single mimivirus particles intercepted and imaged with an X-ray laser[J]. Nature, 2011, 470(7332): 78-81.

[39] R Neutze, R Wouts, D van der Spoel, et al.. Potential for biomolecular imaging with femtosecond X-ray pulses[J]. Nature, 2000, 406(6797): 752-757.

[40] T R M Barends, F Lutz F, B Sabine B, et al.. De novo protein crystal structure determination from X-ray free-electron laser data[J]. Nature, 2014, 505(7482): 244-247.

[41] O Schwarzkopf, B Krassig, J Elmiger J, et al.. Energy-and angle-resolved double photo-ionization in helium[J]. Phys Rev Lett, 1993, 70(20): 3008-3011.

[42] T Weber, A O Czasch, O Jagutzki, et al.. Complete photo-fragmentation of the deuterium molecule[J]. Nature, 2004, 431(7007): 437-440.

[43] J S Briggs, V Schmidt. Differential cross sections for photo-double-ionization of the helium atom[J]. J Phys B At Mol Opt Phys, 2000, 33(1): R1-R48.

[44] A L’Huillier, L Lompre, G Mainfray, et al.. Multiply charged ions induced by multiphoton absorption in rare-gases at 0.53 μm[J]. Phys Rev A, 1983, 27(5): 2503-2512.

[45] D N Fittinghoff, P R Bolton, B Chang, et al.. Observation of nonsequential double ionization of helium with optical tunneling [J]. Phys Rev Lett, 1992, 69(18): 2642-2645.

[46] B Walker, B Sheehy, L F Dimauro, et al.. Precision measurement of strong field double ionization of helium[J]. Phys Rev Lett, 1994, 73(9): 1227-1230.

[47] T Weber, M Weckenbrock, A Staudte, et al.. Recoil-ion momentum distributions for single and double ionization of helium in strong laser fields[J]. Phys Rev Lett, 2000, 84(3): 443-446.

[48] A Staudte, C Ruiz, M SchoFfler, et al.. Binary and recoil collisions in strong field double ionization of helium[J]. Phys Rev Lett, 2007, 99(26): 263002.

[49] A Rudenko, V L B der Jesus, T Ergler, et al.. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm[J]. Phys Rev Lett, 2007, 99(26): 263003.

[50] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B at Mol Opt Phys, 2008, 41(5): 051001.

[51] P Lambropoulos, L A A Nikolopoulos, M G Makris. Signatures of direct double ionization under XUV radiation[J]. Phys Rev A, 2005, 72(1): 013410.

[52] D A Horner, F Morales, T N Rescigno, et al.. Two-photon double ionization of helium above and below the threshold for sequential ionization[J]. Phys Rev A, 2007, 76(3): 030701.

[53] R Pazourek, J Feist, S Nagele, et al.. Universal features in sequential and nonsequential two-photon double ionization of helium[J]. Phys Rev A, 2011, 83(4): 053418.

[54] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B At Mol Opt Phys, 2008, 41(5): 051001.

[55] D A Horner, T N Rescigno, C W McCurdy. Decoding sequential versus nonsequential two-photon double ionization of helium using nuclear recoil[J]. Phy Rev A, 2008, 77(3): 030703.

[56] D A Horner, C W McCurdy, M C N Rescigno. Triple differential cross sections and nuclear recoil in two-photon double ionization of helium[J]. Phy Rev A, 2008, 78(4): 043416.

[57] Th Weber, M Weckenbrock, A Staudte, et al.. Atomic dynamics in single and multi-photondouble ionization: An experimental comparison[J]. Opt Express, 2001, 8(7): 368-376.

[58] A Hishikawa, M Fushitani, Y Hikosaka, et al.. Enhanced nonlinear double excitation of He in intense extreme ultraviolet laser fields[J]. Phys Rev Lett, 2011, 107(24): 243003.

[59] N Saito N, Suzuki I H. Multiple photoionization of Ne in the K-shell ionization region[J]. Phys Scr, 1992, 45(3): 253-256.

[60] J L Chaloupka, J Rudati, R Lafon, et al.. Observation of a transition in the dynamics of strong-field double ionization[J]. Phys Rev Lett, 2003, 90(3): 033002.

[61] B Witzel, N A Papadogiannis, D Charalambidis. Charge-state resolved above threshold ionization[J]. Phys Rev Lett, 2000, 85(11): 2268-2271.

[62] V Schmidt. Photoionization of atoms using synchrotron radiation[J]. Rep Prog Phys, 1992, 64(9): 1483-1659.

[63] J P Connerade, J M Esteva, R C Karnatak. Giant Resonances in Atoms, Molecules, and Solids[M]. New York: Springer, 1987.

[64] M Y Amusia, J P Connerade. The theory of collective motion probed by light[J]. Rep Prog Phys, 2000, 63(1): 41-70.

[65] H Fukuzawa, S K Son, K Motomura, et al.. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses[J]. Phys Rev Lett, 2012, 110(17): 173005.

[66] N Gerken, S Klumpp, A A Sorokin, et al.. Time-dependent multiphoton ionization of Xenon in the soft-X-ray regime[J]. Phys Rev Lett, 2014, 112(21): 213002.

[67] B Rudek, D Rolles, S K Son, et al.. Resonance-enhanced multiple ionization of krypton at an X-ray free-electron laser[J]. Phys Rev A, 2013, 87(2): 023413.

[68] M Meyer, D Cubaynes, V Richardson, et al.. Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr[J]. Phys Rev Lett, 2010, 104(21): 213001.

[69] J F Pérez- Torres, F Morales, F Martin, et al.. Asymmetric electron angular distributions in resonant dissociative photoionization of H with ultrashort XUV pulses[J]. Phys Rev A, 2009, 80(1): 011402.

[70] A S Alnaser, I Litvinyuk, T Osipov, et al.. Momentum-imaging investigations of the dissociation of D2+ and the isomerization of acetylene to vinylidene by intense short laser pulses[J]. J Phys B At Mol Opt Phys, 2006, 39(13): S485-S492.

[71] M E A Madjet, O Vendrell, R Santra. Ultrafast dynamics of photoionized acetylene[J]. Phys Rev Lett, 2011, 107(26): 263002.

[72] 肖体乔, 谢红兰, 邓彪, 等. 上海光源X 射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001.

    Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai synchrotron radiation facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

[73] 梁传晖, 王玉丹, 杜国浩, 等. 同步辐射X 射线图像对比度增强算法研究[J]. 光学学报, 2015, 35(3): 0310003.

    Liang Chuanhui, Wang Yudan, Du Guohao, et al.. Research on the contrast enhancement algorithm of synchrotron radiation X-ray image[J]. Acta Optica Sinica, 2015, 35(3): 0310003.

[74] 朱化春, 佟亚军, 吉特, 等. 同步辐射红外谱学显微光束线站的空间分辨率测试[J]. 光学学报, 2015, 35(4): 0430002.

    Zhu Huachun, Tong Yajun, Ji Te, et al.. Spatial resolution measurement of synchrotron radiation infrared microspectroscopy beamline[J]. Acta Optica Sinica, 2015, 35(4): 0430002.

[75] B Erk, D Rolles, L Foucar, et al.. Inner-shell multiple ionization of polyatomic molecules with an intense X-ray free-electron laser studied by coincident ion momentum imaging[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164031.

冯赫, 张逸竹, 江玉海. 自由电子激光场中原子分子实验研究进展[J]. 激光与光电子学进展, 2016, 53(1): 010002. Feng He, Zhang Yizhu, Jiang Yuhai. Atomic and Molecular Experiments Progress in Free-Electron Laser Field[J]. Laser & Optoelectronics Progress, 2016, 53(1): 010002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!