激光与光电子学进展, 2016, 53 (1): 010002, 网络出版: 2016-02-01  

自由电子激光场中原子分子实验研究进展 下载: 999次

Atomic and Molecular Experiments Progress in Free-Electron Laser Field
冯赫 1,2,*张逸竹 1江玉海 1,3
作者单位
1 中国科学院上海高等研究院, 上海 201210
2 中国科学院大学, 北京100049
3 上海科技大学物质科学与技术学院, 上海 201210
摘要
近年来,超强、超短、超快自由电子激光新技术在世界得到前所未有的发展,已成为探索光与物质相互作用的全新工具。在原子分子领域,短波自由电子激光的应用主要体现在多光子非线性和超快电子原子分子的反应动力学及控制等领域。从简单He 原子到复杂化学生物分子、外壳层到内壳层、单光子到多光子、单脉冲到时间分辨的抽运探测、深紫外到硬X 射线,能量谱到有时间分辨的动量谱,实验取得了一系列重大突破,让人们在飞秒时间尺度和原子空间尺度下探索操纵量子规律成为可能。本文系统介绍了本领域的最新实验进展,通过几个代表性研究成果,展示短波自由电子激光在电子、原子、分子量子特性研究中的重要突破。
Abstract
The free-electron lasers (FELs), a rapid developing technology as a new generation of advanced radiation sources in the last decade, provide ultra-fast, ultra-intense, ultra-short wavelength laser pulses, becoming a robust metrology to explore the forefront of light-matter interactions. In atomic, molecular and optical (AMO) physics, shortwavelength FELs manifest their benefits in exploring multi-photon nonlinear phenomena, observing and controlling reaction dynamics of electrons, atoms and molecules. Experimental advancements from simple helium atom to complex bio-molecules, from outer-shell to inner-shell electrons, from single-photon to multi-photon processes, from single pulse experiments to time-resolved pump-probe approaches, from extreme ultraviolet to hard X-ray regimes, from energy spectra to time-resolved momentum spectra, have successively achieved, all of which are accessible to observe and manipulate quantum world in aspatial scale of atoms and a temporal resolution of femtosecond. The review selects very recent illustrative experimental results in this field and presents the groundbreaking achievements in intriguing quantum behaviors of electrons, atoms and molecules under intense shortwavelength FEL field, demonstrating the fundamental aspects of AMO physics.
参考文献

[1] W Ackermann, G Asova, V Ayvazyan, et al.. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nat Photonics, 2007, 1(6): 336-342.

[2] DESY. Flash parameters[OL]. http://photon-science.desy.de/facilities/flash/flash_parameters/index_eng.html.

[3] T Shintake, H Tanaka, T Hara, et al.. A compact free- electron laser for generating coherent radiation in the extreme ultraviolet region[J]. Nat Photonics, 2008, 2(9): 555-559.

[4] T Ishikawa, H Aoyagi, T Asaka, et al.. A compact X-ray free-electron laser emitting in the sub-angstrom region[J]. Nature Photonics, 2012, 6(8): 540-544.

[5] M Yabashi, H Tanaka, T Tanaka, et al.. Compact XFEL and AMO sciences: SACLA and SCSS[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 8323-8331.

[6] P Emma, R Akre, J Arthur, et al.. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nat Photonics, 2010, 4(9): 641-647.

[7] SLAC. LCLS parameters[OL]. http://www-ssrl.slac.stanford.edu/lcls/users/proposals.html.

[8] E Allaria, R Appio, L Badano, et al.. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nat Photonics, 2012, 6(10): 699-704.

[9] Zhentang Zhao, Dong Wang. Development of X-ray free electron lasers[J]. Chinese J Lasers, 2010, 37(9): 2242-2252.

[10] 刘静, 舒挺, 张军. 欧洲自由电子激光研究进展[J]. 激光与光电子学进展, 2007, 44(6): 43-48.

    Liu Jing, Shu Ting, Zhang Jun. Research development on free electron laser in Europe[J]. Laser & Optoelectronics Progress, 2007, 44(6): 43-48.

[11] 白山. 真空紫外和X 射线自由电子激光器[J]. 激光与光电子学进展, 2003, 40(2): 23-28.

    Bai Shan. Extreme ultraviolet and X-ray free electron lasers[J]. Laser & Optoelectronics Progress, 2003, 40(2): 23-28.

[12] A Rudenko, L Foucar, M Kurka, et al.. Recoil-ion momentum distributions for two-photon double ionization of He and Ne by 44 eV free-electron laser radiation[J]. Phys Rev Lett, 2008, 101(7): 073003.

[13] R Moshammer, Y H Jiang, L Foucar, et al.. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses [J]. Phys Rev Lett, 2007, 98(20): 203001.

[14] A A Sorokin, S V Bobashev, T Feigl, et al.. Photoelectric effect at ultrahigh intensities[J]. Phys Rev Lett, 2007, 99(21): 213002.

[15] M Richter, M Y Amusia, S V Bobashev, et al.. Extreme ultraviolet laser excites atomic giant resonance[J]. Phys Rev Lett, 2009, 102(16): 163002.

[16] L Young, E P Kanter, B Krssig, et al.. Femtosecond electronic response of atoms to ultra-intense X-rays[J]. Nature, 2010, 466(7302): 56-61.

[17] B Rudek, S K Son, D Rolles, et al.. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses[J]. Nat Photonics, 2012, 6(12): 1-8.

[18] A Yamada, H Fukuzawa, K Motomura, et al.. Ion-ion coincidence studies on multiple ionizations of N2 and O2 molecules irradiated by extreme ultraviolet free-electron laser pulses[J]. J Chem Phy, 2010, 132(20): 204305.

[19] Y H Jiang, A Rudenko, M Kurka, et al.. Few-photon multiple ionization of N2 by extreme ultraviolet free-electron laser radiation[J]. Phys Rev Lett, 2009, 102(12): 123002.

[20] Y H Jiang, T Pfeifer, A Rudenko, et al.. Temporal coherence effects in multiple ionization of N2 via XUV pump- probe autocorrelation[J]. Phys Rev A, 2010, 82(4): 5929-5937.

[21] T Sato, T Okino, K Yamanouchi, et al.. Dissociative two-photon ionization of N2 in extreme ultraviolet by intense selfamplified spontaneous emission free electron laser light[J]. Appl Phys Lett, 2008, 92(15): 154103.

[22] J P Cryan, J M Glownia, J Andreasson, et al.. Auger electron angular distribution of double core-hole states in the molecular reference frame[J]. Phys Rev Lett, 2010, 105(8): 083004.

[23] L Fang, M Hoener, O Gessner, et al.. Double core-hole production in N2: beating the Auger clock[J]. Phys Rev Lett, 2010, 105(8): 083005.

[24] L Fang, M Hoener, N Berrah. Ultra-intense X-ray induced non-linear processes in molecular nitrogen[J]. Journal of Physics: Conference Series, 2011, 288(1): 012019.

[25] A Rudenko, Y H Jiang, M Kurka, et al.. Exploring few- photon, few- electron reactions at FLASH: from ion yield and momentum measurements to time-resolved and kinematically complete experiments[J]. J Phys B at Mol Opt Phys, 2010, 43(19): 194004.

[26] Y H Jiang, A Rudenko, J F Pérez-Torres, et al.. Investigating two-photon double ionization of D2 by XUV-pump–XUVprobe experiments[J]. Phys Rev A, 2010, 81(5): 051402.

[27] K Schnorr, A Senftleben, M Kurka, et al.. Electron rearrangement dynamics in dissociating I2 molecules accessed by extreme ultraviolet pump-probe experiments[J]. Phys Rev Lett, 2014, 113(7): 073001.

[28] Y H Jiang, A Rudenko, O Herrwerth, et al.. Ultrafast extreme ultraviolet induced isomerization of acetylene cations[J]. Phys Rev Lett, 2010, 105(26): 263002.

[29] B Erk, R Boll, S Trippel, et al.. Imaging charge transfer in iodomethane upon X-ray photo absorption[J]. Science, 2014, 345(6194): 288-291.

[30] S T Pratt. Charge transfer goes the distance[J]. Science, 2014, 345(6194): 267-268.

[31] B Erk, D Rolles, L Foucar, et al.. Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules[J]. Phys Rev Lett, 2013, 110(5): 053003.

[32] Y H Jiang, A Rudenko, M Kurka, et al.. EUV-photon-induced multiple ionization and fragmentation dynamics: from atoms to molecules[J]. J Phys B at Mol Opt Phys, 2009, 42(13): 134012.

[33] J Feldhaus, M Krikunova, M Meyer, et al.. AMO science at the FLASH and European XFEL free-electron laser facilities[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164002.

[34] N Berrah, J Bozek, and J Costello, et al.. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)[J]. J Mod Opt, 2010, 57(12): 1015-1040.

[35] J Ullrich, A Rudenko, R Moshammer. Free-electron lasers: new avenues in molecular physics and photochemistry[J]. Annu Rev Phys Chem, 2012, 63: 635-660.

[36] L Fang, T Osipov, B F Murphy, et al.. Probing ultrafast electronic and molecular dynamics with free-electron lasers[J]. J Phys B at Mol Opt Phys, 2014, 47(12): 124006.

[37] H N Chapman, P Fromme, A Barty, et al.. Femtosecond X-ray protein nano crystallo graphy[J]. Nature, 2011, 470(7332): 73-77.

[38] M M Seibert, T Ekeberg, F R N C Maia, et al.. Single mimivirus particles intercepted and imaged with an X-ray laser[J]. Nature, 2011, 470(7332): 78-81.

[39] R Neutze, R Wouts, D van der Spoel, et al.. Potential for biomolecular imaging with femtosecond X-ray pulses[J]. Nature, 2000, 406(6797): 752-757.

[40] T R M Barends, F Lutz F, B Sabine B, et al.. De novo protein crystal structure determination from X-ray free-electron laser data[J]. Nature, 2014, 505(7482): 244-247.

[41] O Schwarzkopf, B Krassig, J Elmiger J, et al.. Energy-and angle-resolved double photo-ionization in helium[J]. Phys Rev Lett, 1993, 70(20): 3008-3011.

[42] T Weber, A O Czasch, O Jagutzki, et al.. Complete photo-fragmentation of the deuterium molecule[J]. Nature, 2004, 431(7007): 437-440.

[43] J S Briggs, V Schmidt. Differential cross sections for photo-double-ionization of the helium atom[J]. J Phys B At Mol Opt Phys, 2000, 33(1): R1-R48.

[44] A L’Huillier, L Lompre, G Mainfray, et al.. Multiply charged ions induced by multiphoton absorption in rare-gases at 0.53 μm[J]. Phys Rev A, 1983, 27(5): 2503-2512.

[45] D N Fittinghoff, P R Bolton, B Chang, et al.. Observation of nonsequential double ionization of helium with optical tunneling [J]. Phys Rev Lett, 1992, 69(18): 2642-2645.

[46] B Walker, B Sheehy, L F Dimauro, et al.. Precision measurement of strong field double ionization of helium[J]. Phys Rev Lett, 1994, 73(9): 1227-1230.

[47] T Weber, M Weckenbrock, A Staudte, et al.. Recoil-ion momentum distributions for single and double ionization of helium in strong laser fields[J]. Phys Rev Lett, 2000, 84(3): 443-446.

[48] A Staudte, C Ruiz, M SchoFfler, et al.. Binary and recoil collisions in strong field double ionization of helium[J]. Phys Rev Lett, 2007, 99(26): 263002.

[49] A Rudenko, V L B der Jesus, T Ergler, et al.. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm[J]. Phys Rev Lett, 2007, 99(26): 263003.

[50] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B at Mol Opt Phys, 2008, 41(5): 051001.

[51] P Lambropoulos, L A A Nikolopoulos, M G Makris. Signatures of direct double ionization under XUV radiation[J]. Phys Rev A, 2005, 72(1): 013410.

[52] D A Horner, F Morales, T N Rescigno, et al.. Two-photon double ionization of helium above and below the threshold for sequential ionization[J]. Phys Rev A, 2007, 76(3): 030701.

[53] R Pazourek, J Feist, S Nagele, et al.. Universal features in sequential and nonsequential two-photon double ionization of helium[J]. Phys Rev A, 2011, 83(4): 053418.

[54] E Foumouo, P Antoine, B Piraux, et al.. Evidence for highly correlated electron dynamics in two-photon double ionization of helium[J]. J Phys B At Mol Opt Phys, 2008, 41(5): 051001.

[55] D A Horner, T N Rescigno, C W McCurdy. Decoding sequential versus nonsequential two-photon double ionization of helium using nuclear recoil[J]. Phy Rev A, 2008, 77(3): 030703.

[56] D A Horner, C W McCurdy, M C N Rescigno. Triple differential cross sections and nuclear recoil in two-photon double ionization of helium[J]. Phy Rev A, 2008, 78(4): 043416.

[57] Th Weber, M Weckenbrock, A Staudte, et al.. Atomic dynamics in single and multi-photondouble ionization: An experimental comparison[J]. Opt Express, 2001, 8(7): 368-376.

[58] A Hishikawa, M Fushitani, Y Hikosaka, et al.. Enhanced nonlinear double excitation of He in intense extreme ultraviolet laser fields[J]. Phys Rev Lett, 2011, 107(24): 243003.

[59] N Saito N, Suzuki I H. Multiple photoionization of Ne in the K-shell ionization region[J]. Phys Scr, 1992, 45(3): 253-256.

[60] J L Chaloupka, J Rudati, R Lafon, et al.. Observation of a transition in the dynamics of strong-field double ionization[J]. Phys Rev Lett, 2003, 90(3): 033002.

[61] B Witzel, N A Papadogiannis, D Charalambidis. Charge-state resolved above threshold ionization[J]. Phys Rev Lett, 2000, 85(11): 2268-2271.

[62] V Schmidt. Photoionization of atoms using synchrotron radiation[J]. Rep Prog Phys, 1992, 64(9): 1483-1659.

[63] J P Connerade, J M Esteva, R C Karnatak. Giant Resonances in Atoms, Molecules, and Solids[M]. New York: Springer, 1987.

[64] M Y Amusia, J P Connerade. The theory of collective motion probed by light[J]. Rep Prog Phys, 2000, 63(1): 41-70.

[65] H Fukuzawa, S K Son, K Motomura, et al.. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses[J]. Phys Rev Lett, 2012, 110(17): 173005.

[66] N Gerken, S Klumpp, A A Sorokin, et al.. Time-dependent multiphoton ionization of Xenon in the soft-X-ray regime[J]. Phys Rev Lett, 2014, 112(21): 213002.

[67] B Rudek, D Rolles, S K Son, et al.. Resonance-enhanced multiple ionization of krypton at an X-ray free-electron laser[J]. Phys Rev A, 2013, 87(2): 023413.

[68] M Meyer, D Cubaynes, V Richardson, et al.. Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr[J]. Phys Rev Lett, 2010, 104(21): 213001.

[69] J F Pérez- Torres, F Morales, F Martin, et al.. Asymmetric electron angular distributions in resonant dissociative photoionization of H with ultrashort XUV pulses[J]. Phys Rev A, 2009, 80(1): 011402.

[70] A S Alnaser, I Litvinyuk, T Osipov, et al.. Momentum-imaging investigations of the dissociation of D2+ and the isomerization of acetylene to vinylidene by intense short laser pulses[J]. J Phys B At Mol Opt Phys, 2006, 39(13): S485-S492.

[71] M E A Madjet, O Vendrell, R Santra. Ultrafast dynamics of photoionized acetylene[J]. Phys Rev Lett, 2011, 107(26): 263002.

[72] 肖体乔, 谢红兰, 邓彪, 等. 上海光源X 射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001.

    Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai synchrotron radiation facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

[73] 梁传晖, 王玉丹, 杜国浩, 等. 同步辐射X 射线图像对比度增强算法研究[J]. 光学学报, 2015, 35(3): 0310003.

    Liang Chuanhui, Wang Yudan, Du Guohao, et al.. Research on the contrast enhancement algorithm of synchrotron radiation X-ray image[J]. Acta Optica Sinica, 2015, 35(3): 0310003.

[74] 朱化春, 佟亚军, 吉特, 等. 同步辐射红外谱学显微光束线站的空间分辨率测试[J]. 光学学报, 2015, 35(4): 0430002.

    Zhu Huachun, Tong Yajun, Ji Te, et al.. Spatial resolution measurement of synchrotron radiation infrared microspectroscopy beamline[J]. Acta Optica Sinica, 2015, 35(4): 0430002.

[75] B Erk, D Rolles, L Foucar, et al.. Inner-shell multiple ionization of polyatomic molecules with an intense X-ray free-electron laser studied by coincident ion momentum imaging[J]. J Phys B at Mol Opt Phys, 2013, 46(16): 164031.

冯赫, 张逸竹, 江玉海. 自由电子激光场中原子分子实验研究进展[J]. 激光与光电子学进展, 2016, 53(1): 010002. Feng He, Zhang Yizhu, Jiang Yuhai. Atomic and Molecular Experiments Progress in Free-Electron Laser Field[J]. Laser & Optoelectronics Progress, 2016, 53(1): 010002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!