陈涛涛 1,2张逸竹 3赵静静 1,2周茜 1,2[ ... ]江玉海 1,2,4,*
作者单位
摘要
1 中国科学院上海高等研究院, 上海 201210
2 中国科学院大学, 北京 100049
3 天津大学 太赫兹波研究中心及精密仪器与光电子工程学院, 天津 300072
4 上海科技大学 大科学中心和物理科学与技术学院, 上海 201210
提出了一种光泵浦太赫兹探测技术的改进方案, 使用双色飞秒激光场电离空气诱导等离子体辐射的超短宽带太赫兹脉冲作为探测脉冲, 表征了硅的光激发动力学, 通过表征过程验证了基于所提改进方案的光泵浦太赫兹探测系统的性能。硅的泵浦深度随泵浦功率的增加而提高, 400nm泵浦光的泵浦深度大于800nm泵浦光。使用400nm泵浦光, p掺杂硅的泵浦深度最大, 本征硅次之, n掺杂硅最小; 而使用800nm泵浦光, p掺杂硅的泵浦深度最大, n掺杂硅次之, 本征硅最小。此外, 基于探测脉冲的超宽带宽和超短脉宽, 还观测到了p掺杂硅中的亚皮秒激发态声子波包振荡。
太赫兹 光泵浦太赫兹探测  太赫兹时间分辨光谱 声子波包 terahertz optical pump terahertz probe Si time-resolved terahertz spectroscopy phonon wavepacket 
半导体光电
2022, 43(4): 791
马祎璇 1,2,3李任远 1,3袁俊阳 1,2,3孟秋香 1,2,3[ ... ]江玉海 1,2,3
作者单位
摘要
1 中国科学院上海高等研究院, 上海 201210
2 上海科技大学物质科学与技术学院, 上海 201210
3 中国科学院大学, 北京 100049
4 天津大学精密仪器与光电子工程学院太赫兹研究中心, 天津 300072
将冷原子、超快和强激光技术结合,本课题组最近成功研发了一种新型磁光阱反冲离子动量谱仪(MOTRIMS)装置。介绍了MOTRIMS工作原理,使用吸收成像法和光电离法对靶的密度、温度和速度进行分析标定,得到三维MOT靶的温度为(130±30) μK,速度为(0.1±0.1) m/s,密度约为10 9 atom/cm 3,二维MOT和molasses靶的密度分别约为10 7 atom/cm 3和10 8 atom/cm 3。对比热蒸气靶,在离子飞行方向上冷原子靶的动量分辨率提高了约14倍,飞行时间谱的质量分辨率高达3000。利用800 nm飞秒激光探测Rb +的三维动量分布,在低激光强度10 11 W/cm 2下观测到明显的阈上电离现象,表明铷原子有很大的阈上电离截面。MOTRIMS具有高分辨离子动量分布全空间成像能力,是研究金属原子强场量子微观动力学的新工具。
原子与分子物理学 磁光阱反冲离子动量谱仪 离子高分辨动量分布 铷原子激光冷却 强场电离 
中国激光
2020, 47(6): 0601011
作者单位
摘要
1 河南师范大学物理与材料科学学院, 河南 新乡 453000
2 中国科学院上海高等研究院, 上海 201210
基于迈克耳孙干涉仪的原理,采用共线自相关的测量方法,同时对强度自相关和二维电场自相关进行测量。对强度自相关的测量数据进行高斯拟合,得到所测脉冲时域内光强的半峰全宽约为96.2 fs;由CMOS图像传感芯片所测得的二维电场自相关中干涉条纹的分布情况,可以得到脉冲光斑波前相位的倾斜信息;通过对干涉条纹随时间延迟变化的漂移以及持续时间,采用傅里叶级数拟合分析手段,在延迟位移平台精度限制内,得到脉冲光功率谱存在微弱的1090 nm成分。
超快光学 飞秒脉冲 强度自相关 迈克耳孙干涉仪 电场自相关 
中国激光
2018, 45(12): 1204001
冯赫 1,2,*张逸竹 1江玉海 1,3
作者单位
摘要
1 中国科学院上海高等研究院, 上海 201210
2 中国科学院大学, 北京100049
3 上海科技大学物质科学与技术学院, 上海 201210
近年来,超强、超短、超快自由电子激光新技术在世界得到前所未有的发展,已成为探索光与物质相互作用的全新工具。在原子分子领域,短波自由电子激光的应用主要体现在多光子非线性和超快电子原子分子的反应动力学及控制等领域。从简单He 原子到复杂化学生物分子、外壳层到内壳层、单光子到多光子、单脉冲到时间分辨的抽运探测、深紫外到硬X 射线,能量谱到有时间分辨的动量谱,实验取得了一系列重大突破,让人们在飞秒时间尺度和原子空间尺度下探索操纵量子规律成为可能。本文系统介绍了本领域的最新实验进展,通过几个代表性研究成果,展示短波自由电子激光在电子、原子、分子量子特性研究中的重要突破。
激光技术 自由电子激光 原子分子与光物理 强场物理 
激光与光电子学进展
2016, 53(1): 010002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!