中国激光, 2014, 41 (4): 0403002, 网络出版: 2014-03-25   

激光冲击AZ31镁合金抗腐蚀性能研究

Research of Corrosion Resistance for AZ31 Magnesium Alloy by Laser Shock Processing
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212000
2 江苏理工学院机械工程学院, 江苏 常州 213000
3 东南大学机械工程学院, 江苏 南京 210000
摘要
利用钕玻璃脉冲激光对AZ31镁合金表面进行激光冲击处理,金相显微镜(OM)和透射电子显微镜(TEM)微观组织表明激光冲击波导致镁合金表面层(强化层约0.8 mm)产生超高应变速率的塑性变形,晶粒内部存在大量位错和孪晶,高密度位错相互缠结,并与孪晶相互交叉导致晶粒细化。镁合金冲击表层硬度比基体提高约58%,表面残余压应力达120 MPa。在质量分数为3.5%NaCl溶液中,采用动电位扫描技术和慢应变速率拉伸应力腐蚀试验研究其冲击后的腐蚀行为,结果表明激光冲击后自腐蚀电位提高,腐蚀电流增大,抗腐蚀性有所降低,但激光冲击后镁合金抗应力腐蚀性能提高。
Abstract
AZ31 magnesium alloy is processed by Ndglass laser with the wavelength of 1064 nm and pulse width of 23 ns. Optical microscope (OM) and transmission electron microscope (TEM) show that ultrahigh strain rate plastic deformation induced by laser shock wave takes place at the surface layer and results in extensive formation of dislocations and twins. High density dislocations tangle and intersect with twins lead to the refinement of grains. The micro-hardness of surface layer induced by laser shock processing increases by up to 58 % and the compressive residual stress on the surface of laser shocked area reaches up to 120 MPa. The corrosion behavior of AZ31 in 3.5% NaCl solution is investigated using potentiodynamic scanning technique and the slow strain rate test (strain rate up to 1×10-6). The experimental results show that the corrosion resistance of AZ31 magnesium alloy by laser shock processing reduces due to the rise of the corrosion potential and the increment of corrosion current. However, the stress corrosion resistance of magnesium alloy after laser shock is improved greatly.
参考文献

[1] 余琨, 黎文献, 王日初, 等. 变形镁合金研究、进展及应用[J]. 中国有色金属学报, 2003, 13(2): 277-287.

    Yun Kun, Li Wenxian, Wang Richu, et al.. Research,development and application of wrought magnesium alloys[J]. Journal of Nonferrous Metals, 2003, 13(2): 277-287.

[2] Nicholas N, Atrens A, Song G, et al.. A critical review of the stress corrosion crack (SCC) of magnesium alloys[J].Advanced Engineering Materials, 2005, 7(8): 659-693.

[3] Winzera N, Atrensa A, Dietzel W. Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys[J]. Materials Science and Engineering A, 2007, 466(1-2): 18-31.

[4] 张永康, 陈菊芳, 许仁军. AM50镁合金激光冲击强化实验研究[J]. 中国激光, 2008, 35(7): 1068-1072.

    Zhang Yongkang, Chen Jüfang, Xu Renjun. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. Chinese J Lasers, 2008, 35(7): 1068-1072.

[5] 裴旭, 任爱国, 顾永玉, 等. AZ91镁合金激光冲击强化力学性能研究[J]. 激光技术, 2010, 34(4): 552-556.

    Pei Xu, Ren Aiguo, Gu Yongyu, et al.. Effects of laser shock processing on mechanical properties of AZ91 magnesium alloy[J]. Laser Technology, 2010, 34(4): 552-556.

[6] Y K Zhang, J You, J Z Lu, et al.. Effect of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

[7] 葛茂忠, 张永康, 项建云. AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J]. 中国激光, 2010, 37(11): 2925-2930.

    Ge Maozhong, Zhang Yongkang, Xiang Jianyun. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J]. Chinese J Lasers, 2010, 37(11): 2925-2930.

[8] 聂贵锋, 冯爱新, 任旭东, 等. 激光冲击参数对2024铝合金冲击区域的主应力及其方向的影响[J]. 中国激光, 2012, 39(1): 0103006.

    Nie Guifeng, Feng Aixin, Ren Xudong, et al.. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese J Lasers, 2012, 39(1): 0103006.

[9] 余天宇, 戴峰泽, 张永康, 等. 平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J]. 中国激光, 2012, 39(10): 1003006.

    Yu Tianyu, Dai Fengzei, Zhang Yongkang, et al.. Simulation and experiment study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese J Lasers, 2012, 39(10): 1003006.

[10] 钟俊伟, 鲁金忠, 罗开玉, 等. ANSI 8620合金钢激光冲击强化层摩擦学特性[J]. 中国激光, 2012, 39(1): 0103001.

    Zhong Junwei, Lu Jingzhong, Luo Kaiyu, et al.. Tribological behaviors of laser shock processing ANSI 8620 steel[J]. Chinese J Lasers, 2012, 39(1): 0103001.

[11] H Q Sun, Y N Shi, M X Zhang, et al.. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J]. Acta Materialia, 2007, 55(3): 975-982.

[12] R M Wang, A Eliezer, E Gutman. Microstructures and dislocations in the stressed AZ91D magnesium alloys[J]. Materials Science and Engineering A, 2002, 344(1-2): 279-287.

[13] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

[14] K Y Luo, J Z Lu, L F Zhang, et al.. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials and Design, 2010, 31(5): 2599-2603.

[15] 刘宝胜. 镁合金表面纳米化显微结构和晶粒细化机理研究[D]. 太原: 太原理工大学, 2007. 37-39.

    Liu baosheng. Microstructure and Grain Refinement Mechanism of Surface Nanostructure Magnesium Alloys[D]. Taiyuan: Taiyuan University of Techology, 2007. 37-39.

李兴成, 张永康, 卢雅琳, 陈菊芳, 周金宇. 激光冲击AZ31镁合金抗腐蚀性能研究[J]. 中国激光, 2014, 41(4): 0403002. Li Xingcheng, Zhang Yongkang, Lu Yalin, Chen Jüfang, Zhou Jinyu. Research of Corrosion Resistance for AZ31 Magnesium Alloy by Laser Shock Processing[J]. Chinese Journal of Lasers, 2014, 41(4): 0403002.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!