激光与光电子学进展, 2014, 51 (10): 102801, 网络出版: 2014-09-22   

一种用于机载LiDAR波形数据高斯分解的高斯拐点匹配法 下载: 643次

A Gaussian Inflexion Points Matching Method for Gaussian Decomposition of Airborne LiDAR Waveform Data
作者单位
1 首都师范大学三维信息获取与应用教育部重点实验室, 北京 100048
2 首都师范大学空间信息技术教育部工程研究中心, 北京 100048
3 中国地震局地震预测研究所, 北京 100036
摘要
针对小光斑全波形机载激光雷达(LiDAR)波形数据高斯分解法的核心问题——高斯分量个数估计,提出一种高斯拐点匹配法。该算法用平面曲线离散点集拐点的快速查找算法检测波形数据中的拐点,计算过检测出的拐点及其右边第一个点的直线的斜率,根据斜率将所有检测出的拐点分为左、右拐点,一个左拐点与其邻近的一个右拐点组成一个高斯分量,据此可以确定波形数据中高斯分量个数。采用高斯拐点匹配法对模拟和实测波形数据进行分解,并与传统的脉冲检测方法(重心法和高斯脉冲拟合法)相比。结果表明,高斯拐点匹配法方法能极大地减小伪拐点的影响,快速、准确地检测并分解出波形数据中高斯分量,提高波形数据分解速度。同时其能分解出更多的高斯分量,从而提高点云密度。
Abstract
Estimation of Gaussion components′ number is a core problem in the procedure of Gaussian decomposition of small- footprint full- waveform airborne LiDAR waveform data. A new approach named Gaussian inflexion points matching method (GIPM) is proposed to solve it. GIPM algorithm uses the quick locating algorithm for turning points in discrete point set of plane curve (QLATP) method for detecting the inflexion points (IFPs). The slope of the line between the detected IFP and its adjacent point is calculated. The detected IFPs are classified as left IFPs and right IFPs according to the slope. A left IFP and its neighboring right IFP comprise a Gaussian component, thus getting the number of the Gaussian components of waveform data. GIPM method is used to decompose the simulated and the measured waveform data, comparing with two traditional pulses detection method (center of gravity and Gaussian pulse fitting). The results demonstrate that the GIPM method can tremendously retain the impact of the pseudo IFPs, and quickly and accurately detect and decompose Gaussian components of the waveform data, and then immensely speed up the decomposition of waveform data. Meanwhile, it can get more Gaussian components than others, thus improving the density of point cloud.
参考文献

[1] 于真真, 侯 霞, 周翠芸. 星载激光测高技术发展现状[J].激光与光电子学进展, 2013, 50(2):020006.

    Yu Zhenzhen, Hou Xia, Zhou Cuiyun. Process and current state of space- borne laser altimetry[J]. Laser & Optoelectronics Progress,2013, 50(2):020006.

[2] 王建军. 基于正交化实验对影响机载激光雷达测量精度的工作参数进行最优化设计[J].中国激光, 2013, 40(2):0214003.

    Wang Jianjun. Optimized design of parameters affecting the accuracy of airborne LIDAR by using orthogonalizationbased experiments[J]. Chinese J Lasers,2013, 40(2):0214003.

[3] Alexander Cici, Tansey Kevin, Kaduk Jorg,et al..Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(5):423-432.

[4] Mallet Clement, Lafarge Florent, Roux Michel,et al..A marked point process for modeling lidar waveforms[J]. IEEE Transactions on Image Processing,2010, 19(12):3204-3221.

[5] Mallet Clement, Bretar Frederic. Full- waveform topographic lidar: state- of- the- art[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009, 64(1):1-16.

[6] 刘 诏, 张爱武, 段乙好, 等. 全波形机载激光数据分解算法研究[J].高技术通讯. 2014, 24(2):144-151.

    Liu Zhao, Zhang Aiwu, Duan Yihao,et al..Research on decomposition of full- waveform airborne laser data[J]. High Technology Letters,2014, 24(2):144-151.

[7] Abed Fanar Mansour. Processing intensive full- waveform aerial laser scanning Matlab jobs through condor[J]. Internet of Things and Cloud Computing.2013, 1(1):5-14.

[8] Lin Yu- Ching, Mills Jon, Smith- Voysey Sarah. Rigorous pulse detection from full- waveform airborne laser scanning data[J]. International Journal of Remote Sensing,2010, 31(5):1303-1324.

[9] Fieber Karolina D, Davenport Ian J, Ferryman James M,et al..Analysis of full-waveform LiDAR data for classification of an orange orchard scene[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013, 82: 63-82.

[10] Roncat Andreas, Wagner Wolfgang, Melzer Thomas,et al..Echo detection and localization in full- waveform airborne laser scanner data using the averaged square difference function estimator[J]. The Photogrammetric Journal of Finland,2008, 21(1):62-75.

[11] Hofton Michelle A, Minster Jean Bernard, Blair J Bryan. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing,2000, 38(4):1989-1996.

[12] Persson A, Soderman U, Topel J,et al..Visualization and analysis of full- waveform airborne laser scanner data[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Working Group III/3, 2005. 103-108.

[13] Wagner Wolfgang, Ullrich Andreas, Ducic Vesna,et al.. Gaussian decomposition and calibration of a novel smallfootprint full- waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 6(2):100-112.

[14] Wagner W, Ullrich A, Melzer T,et al.. From single- pulse to full- waveform airborne laser scanning: potential and practice challenges[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2004, XXXVI-3/W52: 201-206.

[15] Chauve Adrien, Mallet Clement, Bretar Frederic,et al..Processing full- waveform LIDAR data: modelling raw signals [C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, 36(3/W52): 102-107.

[16] Ma Hongchao, Li Qi. Modified EM algorithm and its application to the decomposition of laser scanning waveform data [J]. J Remote Sens,2009, 13(1):35-41.

[17] Zhu Junfeng, Zhang Zuxun, Hu Xiangyun,et al..Analysis and application of lidar waveform data using a progressive waveform decomposition method[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2011, XXXVIII-S/W12: 31-36.

[18] 赖旭东, 秦楠楠, 韩晓爽, 等. 一种迭代的小光斑LiDAR波形分解方法[J].红外与毫米波学报, 2013, 32(4):319-324.

    Lai Xudong, Qin Nannan, Han Xiaoshuang,et al..Iterative decomposition method for small foot-print LiDAR waveform [J]. Journal of Infrared and Millimeter Waves,2013, 32(4):319-324.

[19] 王兵团. 平面曲线离散点集拐点的快速查找算法[J].北方交通大学学报, 2001, 25(6):85-87.

    Wang Bingtuan. Quick locating algorithm for turning points in discrete point set of plane curve[J]. Journal of Northern Jiaotong University,2001, 25(6):85-87.

[20] Hug C, Ullrich A, Grimm A. LiteMapper-5600——a waveform-digitizing LIDAR terrain and vegetation mapping system [C]. Internationl Archives of Photogrammery, Remote Sensing and Spatiat Information Science, Working Group VIII/2, 2004.

段乙好, 张爱武, 刘诏, 王书民, 王京萌, 叶秋虹. 一种用于机载LiDAR波形数据高斯分解的高斯拐点匹配法[J]. 激光与光电子学进展, 2014, 51(10): 102801. Duan Yihao, Zhang Aiwu, Liu Zhao, Wang Shumin, Wang Jingmeng, Ye Qiuhong. A Gaussian Inflexion Points Matching Method for Gaussian Decomposition of Airborne LiDAR Waveform Data[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102801.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!