发光学报, 2014, 35 (8): 950, 网络出版: 2014-08-18  

CdSe/CdS核壳纳米晶微波水热法一步合成与发光光谱分析

One-step Preparation of CdSe/CdS Core-shell Nanocrystals by Microwave Hydrothermal Method and Photoluminescence Spectra Analysis
作者单位
天津理工大学 材料物理研究所, 光电器件与显示材料教育部重点实验室, 天津300384
摘要
采用微波水热法一步合成了核壳结构的CdSe/CdS纳米晶, 讨论了巯基丙酸中S2-的释放过程对纳米晶生长的影响。XRD和Raman光谱结果表明, 140 ℃合成温度下获得了CdSe/CdS核壳结构的纳米晶。FTIR光谱结果表明, 巯基丙酸随时间的分解有助于CdS壳层的形成。PL光谱呈现出CdSe纳米晶的带间发射和缺陷发射, 随着核壳结构的形成, CdSe纳米晶的表面缺陷被抑制, 相关的荧光发射减弱。
Abstract
CdSe/CdS core-shell nanocrystals were one-step prepared by microwave-hydrothermal method. The growth mechanism of nanoparticles was discussed and attributed to the sulfur release process from mercaptopropionic acid. The results from XRD and Raman spectra suggested that the core-shell CdSe/CdS nanocrystals were obtained under the reaction temperature of 140 ℃. FTIR spectra were in situ monitored for the decomposition of mercaptopropionic acid upon reaction time, which contributed to the formation of CdS shells. The band-related and trap states fluorescent emission from nanocrystals were both observed in PL spectra. The increased band related emission intensity further verified the formation of core/shell structure of CdSe nanocrystals.
参考文献

[1] Ji W, Jing P, Xu W, et al. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure [J]. Appl. Phys. Lett., 2013, 103(5):053106-1-4.

[2] Sun Q, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nat. Photon., 2007, 1(12):717-722.

[3] Yin Y H, Deng Z B, Lun J C, et al. Organic electroluminescence of ZnSe/ZnS nanocrystal hybrid with MEH-PPV [J]. Chin. J. Lumin.(发光学报), 2012, 33(2):171-175 (in Chinese).

[4] Zhang Q, Lee I, Joo J B, et al. Core-shell nanostructured catalysts [J]. Accounts Chem. Res., 2012, 46(8):1816-1824.

[5] Luo J, Wei H, Li F, et al. Microwave assisted aqueous synthesis of core-shell CdSexTe1-x-CdS quantum dots for high performance sensitized solar cells [J]. Chem. Commun., 2014, 50(26):3464-3466.

[6] Choi H S, Liu W, Liu F, et al. Design considerations for tumour-targeted nanoparticles [J]. Nat. Nanotechnol., 2010, 5(1):42-47.

[7] Steckel J S, Zimmer J P, Coe-Sullivan S, et al. Blue luminescence from (CdS)ZnS core-shell nanocrystals [J]. Angew. Chem. Int. Edit., 2004, 43(16):2154-2158.

[8] Sun X, Liu J, Li Y. Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property [J]. Chem. Mater., 2006, 18(15):3486-3494.

[9] Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J]. J. Am. Chem. Soc., 2008, 130(35):11588-11589.

[10] Schreuder M A, Xiao K, Ivanov I N, et al. White light-emitting diodes based on ultrasmall CdSe nanocrystal electro-luminescence [J]. Nano Lett., 2010, 10(2):573-576.

[11] Chen X H, Zhao J L. Improvement of performance for CdSe quantum dots LEDs by using an inverted device structure and localized surface plasmon resonance [J]. Chin. J. Lumin.(发光学报), 2012, 33(12):1324-1328 (in Chinese).

[12] Lee H J, Yum J H, Leventis H C, et al. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity [J]. J. Phys. Chem. C, 2008, 112(30):11600-11608.

[13] Cordero S R, Carson P J, Estabrook R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers [J]. J. Phys. Chem. B, 2000, 104(51):12137-12142.

[14] Pan D, Wang Q, Jiang S, et al. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach [J]. Adv. Mater., 2005, 17(2):176-179.

[15] Lim J, Jun S, Jang E, et al. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes [J]. Adv. Mater., 2007, 19(15):1927-1932.

[16] Qian H, Qiu X, Li L, et al. Microwave-assisted aqueous synthesis: A rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots [J]. J. Phys. Chem. B, 2006, 110(18):9034-9040.

[17] Teredesai P V, Deepak F L, Govindaraj A, et al. A Raman study of CdSe and ZnSe nanostructures [J]. J. Nanosci. Nanotechno., 2002, 2(5):495-498.

[18] Ingale A, Rustagi K C. Raman spectra of semiconductor nanoparticles: Disorder-activated phonons [J]. Phys. Rev. B, 1998, 58(11):7197-7204.

[19] Schreder B, Dem C, Schmitt M, et al. Raman spectroscopy of Ⅱ-Ⅵ semiconductor nanostructures: CdS quantum dots [J]. J. Raman Spectrosc., 2003, 34(2):100-103.

[20] Tschirner N, Lange H, Schliwa A, et al. Interfacial alloying in CdSe/CdS heteronanocrystals: A Raman spectroscopy analysis [J]. Chem. Mater., 2012, 24(2):311-318.

[21] Dzhagan V M, Valakh M Y, Raevskaya A E, et al. Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS [J]. Nanotechnol., 2007, 18(28):285701-1-7.

[22] Vairavamurthy M A, Goldenberg W S, Ouyang S, et al. The interaction of hydrophilic thiols with cadmium: Investigation with a simple model, 3-mercaptopropionic acid [J]. Mar. Chem., 2000, 70(1):181-189.

[23] Aldana J, Lavelle N, Wang Y, et al. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals [J]. J. Am. Chem. Soc., 2005, 127(8):2496-2504.

[24] Tang H, Yan M, Zhang H, et al. Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine [J]. Mater. Lett., 2005, 59(8):1024-1027.

[25] Pesika N S, Stebe K J, Searson P C. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra [J]. Adv. Mater., 2003, 15(15):1289-1291.

[26] Baker D R, Kamat P V. Tuning the emission of CdSe quantum dots by controlled trap enhancement [J]. Langmuir, 2010, 26(13):11272-11276.

[27] Xu G Q, Liu B, Xu S J, et al. Luminescence studies of CdS spherical particles via hydrothermal synthesis [J]. J. Phys. Chem. Solids, 2000, 61(6):829-836.

朱明雪, 徐建萍, 张晓松, 石庆良, 李霖霖, 刘晓娟, 石鑫, 王亚中, 魏行远, 李岚. CdSe/CdS核壳纳米晶微波水热法一步合成与发光光谱分析[J]. 发光学报, 2014, 35(8): 950. ZHU Ming-xue, XU Jian-ping, ZHANG Xiao-song, SHI Qing-liang, LI Lin-lin, LIU Xiao-juan, SHI Xin, WANG Ya-zhong, WEI Xing-yuan, LI Lan. One-step Preparation of CdSe/CdS Core-shell Nanocrystals by Microwave Hydrothermal Method and Photoluminescence Spectra Analysis[J]. Chinese Journal of Luminescence, 2014, 35(8): 950.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!