光学学报, 2017, 37 (7): 0728003, 网络出版: 2017-07-10   

基于改进豪斯多夫距离的扩展目标形态估计评估

Shape Estimation Evaluation of Extended Objects Based on Modified Hausdorff Distance
作者单位
1 河南科技大学信息工程学院, 河南 洛阳 471023
2 东南大学毫米波国家重点实验室, 江苏 南京 210096
摘要
为了验证高精度传感器量测下某种扩展目标跟踪算法的有效性,往往需要与其它算法进行对比,并评估其估计性能。与传统的点目标不同,扩展目标跟踪的主要任务不仅仅是要估计出目标的运动状态,更重要的是要对其扩展形态进行精确估计。因此,对扩展目标的形态估计性能评估有着迫切的需求。针对基于星凸形和支撑函数这两种具有代表性的扩展目标模型,考虑到其所具有的不同的形态参数描述方式,提出了一种具有不同数学形式的改进豪斯多夫距离来解决此问题。仿真实验表明,提出的改进豪斯多夫距离能够作为一种有效的度量准则来对扩展目标的形态估计性能进行有效评估。
Abstract
In order to verify the validity of extended objects tracking algorithm under high precision sensors measurement, it is often necessary to compare with other algorithms and evaluate its estimated performance. Unlike classical point objects, the main task of extended objects tracking is not only to estimate the motion state of the objects, but also more importantly to accurately estimate their shape. As a result, there is an urgent need to the shape estimation performance evaluation of the extended objects. Aiming at the two kinds of representative extended target models based on star-convex and support functions, considering their different morphological parameters, an improved Hausdorff distance with different mathematical forms is proposed. Simulation results demonstrate that the modified Hausdorff distance can be used as an effective metrics to evaluate the shape estimation performance of the extended targets effectively.
参考文献

[1] 张 慧, 徐 晖, 王雪莹, 等. 一种基于椭圆随机超曲面模型的群目标高斯混合PHD滤波器[J]. 光学学报, 2013, 33(9): 0904001.

    Zhang Hui, Xu Hui, Wang Xueying, et al. A Gaussian mixture PHD filter for group targets tracking based on ellipse random hypersurface models[J]. Acta Optica Sinica, 2013, 33(9): 0904001.

[2] Li X R, Zhao Z L. Evaluation of estimation algorithms-part I: incomprehensive performance measures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1340-1358.

[3] 吴曙东, 黄建余, 赵志龙, 等. 聚束模式合成孔径激光雷达实验演示[J]. 光学学报, 2016, 36(6): 0628001.

    Wu Shudong, Huang Jianyu, Zhao Zhilong, et al. Experimental demonstration of spotlight mode synthetic aperture ladar[J]. Acta Optica Sinica, 2016, 36(6): 0628001.

[4] 吴 谨, 赵志龙, 吴曙东, 等. 12.9 m高分辨率合成孔径激光雷达成像[J]. 光学学报, 2015, 35(12): 1228002.

    Wu Jin, Zhao Zhilong, Wu Shudong, et al. High resolution synthetic aperture ladar imaging at 12.9 m distance[J]. Acta Optica Sinica, 2015, 35(12): 1228002.

[5] Gilhom K, Salmond D. Spatial distribution model for tracking extended objects[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 364-371.

[6] Baum M, Noack B, Hanebeck U D. Extended object and group tracking with elliptic random hypersurface model[C]. The 13th International Conference on Information Fusion, Edinburgh, United Kingdom, 2010.

[7] Baum M, Hanebeck U D. Shape tracking of extended objects and group targets with star-convex RHMs[C]. The Proceedings of the 14th International Conference on Information Fusionm, Chicago, USA, 2011.

[8] Koch W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059.

[9] Lan J, Li X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463.

[10] Lan J, Li X R. Tracking of extended object or target group using random matrix-part I: new modeland approach[C]. The Proceedings of the 15th International Conference on Information Fusion, Singapore, 2012.

[11] Feldmann M, Franken D, Koch W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420.

[12] Koch W, van Keuk G. Multiple hypothesis trackmaintenance with possibly unresolved measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 883-892.

[13] Sun L, Li X R, Lan J. Modeling of extended objects based on support functions and extended Gaussian images for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3021-3035.

[14] Ghosh P K, Kumar K. Support function representation of convex bodies, its application in geometric computing, and some related representations[J]. Computer Vision and Image Understanding, 1998, 72(3): 379-403.

[15] Karl W C, Verghese G C, Willsky A S. Reconstructing ellipsoids from projections[J]. CVGIP: Graphical Models and Image Processing, 1994, 56(2): 124-139.

[16] Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(6): 477-482.

[17] Li X R, JilkovV P. Survey of maneuvering target tracking-part VI: approximation techniques for nonlinear filtering[C]. The Proceedings of the 2004 SPIE Conference on Signal and Data Processing of Small Targets, 2004, 5428: 537-550.

[18] Sim D, Kwon O, Park R. Object matching algorithms using robust Hausdorff distance measures[J]. IEEE Transactions on Image Processing, 1999, 8(3): 425-429.

[19] Li X R, Jilkov V P. Survey of maneuvering target tracking-part I: dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.

孙力帆, 张森, 冀保峰, 普杰信. 基于改进豪斯多夫距离的扩展目标形态估计评估[J]. 光学学报, 2017, 37(7): 0728003. Sun Lifan, Zhang Sen, Ji Baofeng, Pu Jiexin. Shape Estimation Evaluation of Extended Objects Based on Modified Hausdorff Distance[J]. Acta Optica Sinica, 2017, 37(7): 0728003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!