中国激光, 2013, 40 (1): 0101002, 网络出版: 2012-12-12   

基于液体填充微结构光纤的新型光子功能器件 下载: 522次

Novel Photonic Functional Devices based on Liquid-Filling Microstructured Optical Fibers
姚建铨 1,2,*王然 1,2苗银萍 1,2,3陆颖 1,2赵晓蕾 1,2景磊 1,2
作者单位
1 天津大学精密仪器与光电子工程学院激光与光电子研究所, 天津 300072
2 天津大学光电信息技术科学教育部重点实验室, 天津 300072
3 天津理工大学电子信息工程学院 天津薄膜电子与通信器件重点实验室, 天津 300384
摘要
基于液体材料填充的微结构光纤光子器件有效地将功能材料在不同外界物理场作用下的物理效应同光纤自身的微纳结构结合起来,具有可调谐、设计灵活、全光纤结构和易于集成等优点,是未来光纤光子器件发展的重要方向。掌握不同填充材料、填充方法及所制作器件的不同特性、功能和应用对这一领域的研究具有重要的指导意义。综合阐述了近年来基于液体材料填充的微结构光纤光子器件的研究进展,分析和归纳了各种液态功能材料的种类、物理特性及填充方法,系统阐述了基于该种方法实现的光开关及衰减器、滤波器、调制器、色散补偿器等可调谐光纤光子器件及光纤传感器件,最后对该领域未来的发展方向和前景进行了展望,为未来新型光纤光子器件的研制提供必要的依据和参考。
Abstract
The functional devices based on the microstructured optical fiber infiltrated with liquids effectively combine the micro/nano structure with the physical effect of materials under different external fields. They provide a promising platform for novel photonic devices with the advantages of tunability, flexibility in design, all-in-fiber structure and integration. In this paper, the recent research statue of the liquid-filling microstructured optical fiber devices, such as optical switches/attenuators, filters, modulators and dispersion compensators, as well as optical fiber sensors, is reviewed. At the same time, the variety and physical characteristics of functional materials and the filling methods, which are the focus for future research in this area, are analysed. Finally, some prospects are given for the reference and research in the future.
参考文献

[1] R. He, P. Sazio, A. Peacock et al.. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres[J]. Nature Photonics, 2012, 6(3): 174~179

[2] J. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851

[3] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362

[4] J. Knight, T. Birks, P. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549

[5] J. Knight, J. Broeng, T. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478

[6] T. Birks, J. Knight, P. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961~963

[7] J. Knight, T. Birks, R. Cregan et al.. Large mode area photonic crystal fibre[J]. Electron. Lett., 1998, 34(13): 1347~1348

[8] A. Ortigosa-Blanch, J. Knight, W. Wadsworth et al.. Highly birefringent photonic crystal fibers[J]. Opt. Lett., 2000, 25(18): 1325~1327

[9] K. Saitoh, M. Koshiba. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt. Express, 2004, 12(10): 2027~2032

[10] T. Birks, D. Mogilevtsev, J. Knight et al.. Dispersion compensation using single-material fibers[J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674~676

[11] R. Tang, J. Lasri, P. Devgan et al.. Microstructure-fibre-based optical parametric amplifier with gain slope of ~200 dB/W/km in the telecom range[J]. Electron. Lett., 2003, 39(2): 195~196

[12] 耿鹏程, 张伟刚, 张珊珊 等. 新型宽带单偏振单模光子晶体光纤的设计[J]. 光学学报, 2011, 31(7): 0706001

    Geng Pengcheng, Zhang Weigang, Zhang Shanshan et al.. Design of new type single-polarization single-mode photonic crystal fiber with wide bandwidth[J]. Acta Optica Sinica, 2011, 31(7): 0706001

[13] J. Shephard, J. Jones, D. Hand et al.. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers[J]. Opt. Express, 2004, 12(4): 717~723

[14] 奚小明, 陈子伦, 孙桂林 等. 双波长抽运拉锥光子晶体光纤产生超连续谱研究[J]. 光学学报, 2011, 31(2): 0206001

    Xi Xiaoming, Chen Zilun, Sun Guilin et al.. Dual-wavelength pumped supercontinuum generation in tapered photonic crystal fibers[J]. Acta Optica Sinica, 2011, 31(2): 0206001

[15] A. Agrawal, N. Kejalakshmy, B. Rahman et al.. Soft glass equiangular spiral photonic crystal fiber for supercontinuum generation[J]. IEEE Photon. Technol. Lett., 2009, 21(22): 1722~1724

[16] S. Afshar, S. Warren-Smith, T. Monro. Enhancement of fluorescence-based sensing using microstructured optical fibres[J]. Opt. Express, 2007, 15(26): 17891~17901

[17] T. Monro, W. Belardi, K. Furusawa et al.. Sensing with microstructured optical fibres[J]. Measure. Sci. & Technol., 2001, 12(7): 854~858

[18] W. Macpherson, E. Rigg, J. Jones et al.. Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity[J]. J. Lightwave Technol., 2005, 23(3): 1227~1231

[19] 芦鑫, 毕卫红, 麻硕 等. 双孔光子晶体光纤光学电压传感方案研究[J]. 中国激光, 2011, 38(11): 1105003

    Lu Xin, Bi Weihong, Ma Shuo et al.. Optical voltage transducer based on two-hole photonic crystal fiber[J]. Chinese J. Lasers, 2011, 38(11): 1105003

[20] B. Eggleton, C. Kerbage, P. Westbrook et al.. Microstructured optical fiber devices[J]. Opt. Express, 2001, 9(13): 698~713

[21] A. Samoc. Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared[J]. J. Appl. Phys., 2003, 94(9): 6167~6174

[22] C. Kerbage, P. Steinvurzel, P. Reyes et al.. Highly tunable birefringent microstructured optical fiber[J]. Opt. Lett., 2002, 27(10): 842~844

[23] B. Kuhlmey, B. Eggleton, D. Wu. Fluid-filled solid-core photonic bandgap fibers[J]. J. Lightwave Technol., 2009, 27(11): 1617~1630

[24] A. Lorenz, R. Schuhmann, H. Kitzerow. Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model[J]. Opt. Express, 2010, 18(4): 3519~3530

[25] M. Haakestad, T. Alkeskjold, M. Nielsen et al.. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(4): 819~821

[26] A. Candiani, M. Konstantaki, W. Margulis et al.. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid[J]. Opt. Express, 2010, 18(24): 24654~24660

[27] Y. P. Miao, B. Liu, K. L. Zhang et al.. Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid[J]. Appl. Phys. Lett., 2011, 98(2): 021103

[28] A. Sharma, R. Jha, B. Gupta. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review[J]. IEEE Sensors Journal, 2007, 7(8): 1118~1129

[29] Y. Zhang, C. Gu, A. Schwartzberg et al.. Surface-enhanced Raman scattering sensor based on D-shaped fiber[J]. Appl. Phys. Lett., 2005, 87(12): 123105

[30] A. Sutherland. Quantum dots as luminescent probes in biological systems[J]. Current Opinion in Solid State and Materials Science, 2002, 6(4): 365~370

[31] M. Kazes, D. Lewis, Y. Ebenstein et al.. Lasing from semiconductor quantum rods in a cylindrical microcavity[J]. Advanced Materials, 2002, 14(4): 317~321

[32] S. Kawanishi, T. Komukai, M. Ohmori et al.. Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber[C]. Lasers and Eletcro-Optics Conference, 2007, Baltimore, Maryland, 1~2

[33] K. Nielsen, D. Noordegraaf, T. Srensen et al.. Selective filling of photonic crystal fibres[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(8): 13~20

[34] X. Zhang, R. Wang, F. Cox et al.. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers[J]. Opt. Express, 2007, 15(24): 16270~16278

[35] Y. Huang, Y. Xu, A. Yariv. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Appl. Phys. Lett., 2004, 85(22): 5182~5184

[36] L. Xiao, W. Jin, M. Demokan et al.. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Opt. Express, 2005, 13(22): 9014~9022

[37] Y. Wang, X. Tan, W. Jin et al.. Improved bending property of half-filled photonic crystal fiber[J]. Opt. Express, 2010, 18(12): 12197~12202

[38] W. Qian, C. Zhao, Y. Wang et al.. Partially liquid-filled hollow-core photonic crystal fiber polarizer[J]. Opt. Lett., 2011, 36(16): 3296~3298

[39] B. Cumpston, S. Ananthavel, S. Barlow et al.. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51~54

[40] M. Deubel, G. Freymann, M. Wegener et al.. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 2004, 3(7): 444~447

[41] T. Gissibl, M. Vieweg, M. Vogel et al.. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes[J]. Appl. Phys. B: Lasers and Optics, 2012, 106(3): 1~7

[42] F. Wang, W. Yuan, O. Hansen et al.. Selective filling of photonic crystal fibers using focused ion beam milled microchannels[J]. Opt. Express, 2011, 19(18): 17585~17590

[43] C. Kerbage, A. Hale, A. Yablon et al.. Integrated all-fiber variable attenuator based on hybrid microstructure fiber[J]. Appl. Phys. Lett., 2001, 79(19): 3191~3193

[44] T. Larsen, A. Bjarklev, D. Hermann et al.. Optical devices based on liquid crystal photonic bandgap fibres[J]. Opt. Express, 2003, 11(20): 2589~2596

[45] F. Du, Y. Lu, S. Wu. Electrically tunable liquid-crystal photonic crystal fiber[J]. Appl. Phys. Lett., 2004, 85(12): 2181~2183

[46] J. Lgsgaard, T. Alkeskjold. Designing a photonic bandgap fiber for thermo-optic switching[J]. J. Opt. Soc. Am. B, 2006, 23(5): 951~957

[47] Y. Wang, W. Jin, L. Jin et al.. Optical switch based on a fluid-filled photonic crystal fiber Bragg grating[J]. Opt. Lett., 2009, 34(23): 3683~3685

[48] Y. Wang, H. Bartelt, W. Ecke et al.. Thermo-optic switching effect based on fluid-filled photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2010, 22(3): 164~166

[49] Y. Wang, X. Tan, W. Jin et al.. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications[J]. Opt. Lett., 2010, 35(1): 88~90

[50] M. Vieweg, S. Pricking, T. Gissibl et al.. Tunable ultrafast nonlinear optofluidic coupler[J]. Opt. Lett., 2012, 37(6): 1058~1060

[51] A. Abramov, B. Eggleton, J. Rogers et al.. Electrically tunable efficient broad-band fiber filter[J]. IEEE Photon. Technol. Lett., 1999, 11(4): 445~447

[52] P. Steinvurzel, B. Eggleton, C. Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre[J]. Electron. Lett., 2005, 41(8): 463~464

[53] L. Scolari, T. Alkeskjold, A. Bjarklev. Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre[J]. Electron. Lett., 2006, 42(22): 1270~1271

[54] J. Du, Y. Liu, Z. Wang et al.. Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges[J]. Appl. Opt., 2008, 47(29): 5321~5324

[55] T. Alkeskjold, J. Lgsgaard, A. Bjarklev et al.. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers[J]. Opt. Express, 2004, 12(24): 5857~5871

[56] V. Hsiao, C. Ko. Light-controllable photoresponsive liquid-crystal photonic crystal fiber[J]. Opt. Express, 2008, 16(17): 12670~12676

[57] P. Zu, C. Chan, L. Siang et al.. Magneto-optic fiber Sagnac modulator based on magnetic fluids[J]. Opt. Lett., 2011, 36(8): 1425~1427

[58] X. Yang, Y. Liu, F. Tian et al.. Optical fiber modulator derivates from hollow optical fiber with suspended core[J]. Opt. Lett., 2012, 37(11): 2115~2117

[59] A. Sharkawy, D. Pustai, S. Shi et al.. Modulating dispersion properties of low index photonic crystal structures using microfluidics[J]. Opt. Express, 2005, 13(8): 2814~2827

[60] C. Yu, J. Liou, S. Huang et al.. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation[J]. Opt. Express, 2008, 16(7): 4443~4451

[61] J. Hsu, G. Ye. Dispersion ultra-strong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber[J]. J. Opt. Soc. Am. B, 2012, 29(8): 2021~2028

[62] A. Czapla, T. Wolinski, S. Ertman et al.. Sensing apolications of photonic crystal fibers infiltrated with liquid crystals[C]. Instrumentation and Measurement Technology Conference, 2007, Poland, 1~5

[63] D. Wu, B. Kuhlmey, B. Eggleton. Ultrasensitive photonic crystal fiber refractive index sensor[J]. Opt. Lett., 2009, 34(3): 322~324

[64] T. Han, Y. Liu, Z. Wang et al.. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor[J]. Opt. Lett., 2010, 35(12): 2061~2063

[65] H. Lee, M. Schmidt, P. Uebel et al.. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel[J]. Opt. Express, 2011, 19(9): 8200~8207

[66] 李学金, 于永芹, 洪学明 等. 基于液体填充的光子晶体光纤温度传感特性分析[J]. 中国激光, 2009, 36(5): 1140~1144

    Li Xuejin, Yu Yongqin, Hong Xueming et al.. Analysis on temperature sensing properties of photonic crystal fiber based on liquid filling[J]. Chinese J. Lasers, 2009, 36(5): 1140~1144

[67] Y. Yu, X. Li, X. Hong et al.. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling[J]. Opt. Express, 2010, 18(15): 15383~15388

[68] Y. Xu, X. Chen, Y. Zhu. High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials[J]. Sensors, 2008, 8(3): 1872~1878

[69] 王若琪, 姚建铨, 周睿 等. 填充混合液体的光子晶体光纤温度传感研究[J]. 光电子·激光, 2011, 22(11): 1609~1612

    Wang Ruoqi, Yao Jianquan, Zhou Rui et al.. Research of photonic crystal fiber temperature sensor with mixture liquid filling[J]. Journal of Optoelectronics·Laser, 2011, 22(11): 1609~1612

[70] A. Hassani, M. Skorobogatiy. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Opt. Express, 2006, 14(24): 11616~11621

[71] B. Gauvreau, A. Hassani, M. Fehri et al.. Photonic bandgap fiber-based surface plasmon resonance sensors[J]. Opt. Express, 2007, 15(18): 11413~11426

[72] X. Yu, Y. Zhang, S. Pan et al.. A selectively coated photonic crystal fiber based surface plasmon resonance sensor[J]. J. Opt., 2010, 12(1): 015005

[73] H. Yan, C. Gu, C. Yang et al.. Hollow core photonic crystal fiber surface-enhanced Raman probe[J]. Appl. Phys. Lett., 2006, 89(20): 204101

[74] Y. Zhang, C. Shi, C. Gu et al.. Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering[J]. Appl. Phys. Lett., 2007, 90(19):193504

[75] A. Peacock, A. Amezcua-Correa, J. Yang et al.. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions[J]. Appl. Phys. Lett., 2008, 92(14): 141113

[76] X. Yang, C. Shi, D. Wheeler et al.. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering[J]. J. Opt. Soc. Am. A, 2010, 27(5): 977~984

[77] D. Noordegraaf, L. Scolari, J. Lgsgaard et al.. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Opt. Express, 2007, 15(13): 7901~7912

[78] 宋晓利, 白育堃, 任广军 等. 液体填充光子晶体光纤中长周期光栅的温度传感特性分析[J]. 中国激光, 2011, 38(12): 1205007

    Song Xiaoli, Bai Yukun, Ren Guangjun et al.. Analysis of temperature sensing characteristics of a long-period grating formed in a liquid-filled photonic crystal fiber[J]. Chinese J. Lasers, 2011, 38(12): 1205007

[79] L. Rindorf, O. Bang. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating[J]. Opt. Lett., 2008, 33(6): 563~565

[80] J. Du, Y. Liu, Z. Wang et al.. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused[J]. Opt. Lett., 2008, 33(19): 2215~2217

[81] W. Qian, C. Zhao, S. He et al.. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror[J]. Opt. Lett., 2011, 36(9): 1548~1550

[82] R. Wang, J. Yao, Y. Miao et al.. Thermo-optic switch based on fiuid-filled photonic crystal fiber[J]. Optoelectronics Letters, 2012, 8(6): 430~432

[83] 孟庆莹, 任广军, 李敬辉 等. 反射式掺杂液晶光子晶体光纤电场传感实验研究[J]. 光电子·激光, 2012, 23(9): 1713~1716

    Meng Qingying, Ren Guangjun, Li Jinghui et al.. Experimental study of reflection-type liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements[J]. Journal of Optoelectronics·Laser, 2012, 23(9): 1713~1716

[84] L. Lü, G. Ren, B. Liu et al.. Temperature influence on propagation characteristics of liquid crystal photonic crystal fiber of terahertz wave[J]. Journal of Optoelectronics and Advanced Materials, 2011, 13(7): 755~759

[85] P. Bing, Z. Li, J. Yao et al.. A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core[J]. Mod. Phys. Lett. B, 2012, 26(13): 1250082

[86] P. Bing, J. Yao, Y. Lu et al.. A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels[J]. Opt. Appl., 2012, 42(3): 1~9

[87] Y. Lu, C. Hao, B. Wu et al.. Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments[J]. Sensors, 2012, 12(9): 12016~12025

[88] 邸志刚, 姚建铨, 张培培 等. 纳米银基底表面增强拉曼散射效应仿真及优化[J]. 激光与红外, 2011, 41(8): 850~855

    Di Zhigang, Yao Jianquan, Zhang Peipei et al.. Simulation and optimization of SERS effect in nano Ag substractes[J]. Laser & Infrared, 2011, 41(8): 850~855

姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊. 基于液体填充微结构光纤的新型光子功能器件[J]. 中国激光, 2013, 40(1): 0101002. Yao Jianquan, Wang Ran, Miao Yinping, Lu Ying, Zhao Xiaolei, Jing Lei. Novel Photonic Functional Devices based on Liquid-Filling Microstructured Optical Fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!