中国激光, 2016, 43 (3): 0303004, 网络出版: 2016-01-25   

利用纳秒激光提高铜表面吸光率的研究

Research on Light Absorption Enhancement of Copper by Nanosecond Laser
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212013
2 中国科学院半导体研究所全固态光源实验室, 北京 100083
摘要
利用纳秒脉冲激光对铜表面进行打黑处理,并使用分光光度计、光学表面轮廓仪、扫描电子显微镜(SEM)等对试样进行反射率、粗糙程度的测量以及微观结构的观察。选用单向填充式扫描方式研究了不同扫描间距对打黑效果的影响,发现在不同扫描间距条件下,打黑后会形成不同的微观结构(光栅状、近似光栅状、珊瑚状等),且减小扫描间距可以显著增加吸光率。其中,当扫描间距为10 μm 时,打黑后的样品在200~760 nm 波段的吸光率可达97%以上,在760~1110 nm 波段达到90%以上,而在1110~2500 nm 波段也保持在85%以上。此外,研究了二次填充对打黑效果的影响,发现打黑后样品的吸光率也较第一次打黑有一定提高,且不同填充方向的二次打黑所造成的吸光率的差异随着扫描间距的减小而逐渐减小。
Abstract
Nanosecond pulsed laser is used to blacken the surface of copper, and the reflectance and roughness of the samples are measured by a spectrophotometer and an optical surface profiler. The micro-nanostructure is observed by a scanning electron microscope (SEM), and the effect of scanning distance on blackening under unidirectional filling scan is investigated. The results show that different micro-nanostructures are formed after different scanning distances (grating-like, approximately grating-like, and coral-like, and so on), and the decrease of scanning distance can enhance light absorption obviously. When the scanning distance is 10 μm, the absorption of blackened area is over 97% in the wavelength band ranged from 200 nm to 760 nm, over 90% ranged from 760 nm to 1110 nm, and over 85% ranged from 1110 nm to 2500 nm. In addition, the effect of different filling directions at the second time under different scanning distances is also investigated. A certain enhanced absorption value is found after the second blackening compared to the first time, and the difference in absorption among different filling directions is diminished with the decrease in scanning distance.
参考文献

[1] Carey J E, Crouch C H, Shen M Y, et al.. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes [J]. Opt Lett, 2005, 30(14): 1773-1775.

[2] 邵云亮, 周明, 张伟, 等. 飞秒激光诱导石墨表面周期性纳米结构[J]. 激光与光电子学进展, 2009, 46(7): 41-44.

    Shao Yunliang, Zhou Ming, Zhang Wei, et al.. Nanoscale period surface structure of graphite induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2009, 46(7): 41-44.

[3] Murthy N S, Prabhu R D, Martin J J, et al.. Self-assembled and etched cones on laser ablated polymer surfaces[J]. J Appl Phys, 2006, 100(2): 023538.

[4] Dong X M, Song H Y, Liu S B. Femtosecond laser induced periodic large-scale surface structures on metals[J]. Chin Opt Lett, 2015, 13 (7): 071001.

[5] 唐延甫, 聂真威. 偏振激光诱导金属表面周期条纹结构机理的研究[J]. 中国激光, 2015, 42(7): 0702022.

    Tang Yanfu, Nie Zhenwei. Study on periodic ripples on metallic surfaces induced by polarized lasers[J]. Chinese J Lasers, 2015, 42(7): 0702022.

[6] Ursu I, Popa A, Prokhorov A M, et al.. Studies of the change of a metallic surface microrelief as a result of multiple-pulse action of powerful UV laser pulses[J]. J Appl Phys, 1985, 58(10): 3909-3913.

[7] Wang J C, Guo C L. Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses[J]. J Appl Phys, 2006, 100(2): 023511.

[8] Meng F T, Hu J, Han W N, et al.. Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser[J]. Chin Opt Lett, 2015, 13(6): 062201.

[9] Kazakevich P V, Simakin A V, Shafeev G A. Formation of periodic structures by laser ablation of metals in liquids[J]. Appl Surf Sci, 2006, 252(13): 4457-4461.

[10] Tang G, Abdolvand A. Laser-assisted highly organized structuring of copper[J]. Opt Mater Express, 2011, 1(8): 1425-1432.

[11] Hwang T Y, Vorobyev A Y, Guo C L. Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals [J]. Opt Express, 2011, 19(S4): A824-A829.

[12] 尹正茂. 氧化物微纳米结构提高GaN 基LED 光提取效率的研究[D]. 济南: 山东大学, 2014: 35-109.

    Yin Zhengmao. Improving Light Extraction Efficiency of GaN-Based LEDs by Oxide Micro&Nano Structures[D]. Jinan: Shandong University, 2014: 35-109.

[13] 薛军, 杨勇, 李晨, 等. 飞秒激光诱导自组织纳米光栅偏振散射特性研究[J]. 光学学报, 2014, 34(4): 0432001.

    Xue Jun, Yang Yong, Li Chen, et al.. Research on polarized scattering of self-organized nanogratings induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432001.

[14] Vorobyev A Y, Guo C L. Enhanced absorptance of gold following multipulse femtosecond laser ablation[J]. Phys Rev B, 2005, 72(19): 195422.

[15] Vorobyev A Y, Guo C L. Femtosecond laser blackening of platinum[J]. J Appl Phys, 2008, 104(5): 053516.

[16] Vorobyev A Y, Guo C L. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl Phys A, 2007, 86(3): 321-324.

[17] Paivasaari K, Kaakkunen J J J, Kuittinen M, et al.. Enhanced optical absorptance of metals using interferometric femtosecond ablation [J]. Opt Express, 2007, 15(21): 13838-13843.

[18] Yang Y, Yang J J, Liang C Y, et al.. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses[J]. Opt Express, 2008, 16(15): 11259-11265.

[19] Tao H Y, Song X W, Hao Z Q, et al.. One-step formation of multifunctional nano- and microscale structures on metal surface by femtosecond laser[J]. Chin Opt Lett, 2015, 13(6): 061402.

[20] Tao H Y, Lin J Q, Hao Z Q, et al.. Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Appl Phys Lett, 2012, 100(20): 201111.

[21] 黄永光, 刘世柄. Ti-6Al-4V 合金表面微纳米结构的超快激光制备及其反射光谱响应[J]. 中国激光, 2009, 36(12): 3133-3137.

    Huang Yongguang, Liu Shibing. Preparation and reflection spectra response of Ti-6Al-4V alloy surface with ultrafast laser micro-nanostructuring[ J]. Chinese J Lasers, 2009, 36(12): 3133-3137.

[22] 唐万羿, 周明, 任乃飞, 等. 飞秒激光微构造硅表面镀AZO 膜的形貌及其光学吸收性能[J]. 中国激光, 2011, 38(12): 1207001.

    Tang Wanyi, Zhou Ming, Ren Naifei, et al.. Surface morphology and optical absorption of femtosecond laser microstructured silicon coated with AZO film[J]. Chinese J Lasers, 2011, 38(12): 1207001.

[23] Sukmanowski J, Royer F X, N lting B, et al.. Light absorption enhancement by nanoparticles[J]. J Appl Phys, 2005, 97(10): 104332.

[24] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914.

[25] Vorobyev A Y, Topkov A N, Gurin O V, et al.. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Appl Phys Lett, 2009, 95(12): 121106.

[26] Vorobyev A Y, Guo C L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon[J]. Opt Express, 2011, 19(S5): A1032.

[27] Tang G, Hourd A C, Abdolvand A. Nanosecond pulsed laser blackening of copper[J]. Appl Phys Lett, 2012, 101(23): 231902.

[28] Crouch C H, Carey J E, Warrender J M, et al.. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Appl Phys Lett, 2004, 84(11): 1850-1852.

[29] Bensaoula A, Boney C, Pillai R, et al.. Arrays of 3D micro-columns generated by laser ablation of Ta and steel: Modelling of a black body emitter[J]. Appl Phys A, 2004, 79(4): 973-975.

[30] Kaakkunen J J J, Paivasaari K, Kuittinen M, et al.. Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation [J]. Appl Phys A, 2009, 94(2): 215-220.

任乃飞, 林康, 张志研, 梁浩, 高文焱, 王奕博, 林学春. 利用纳秒激光提高铜表面吸光率的研究[J]. 中国激光, 2016, 43(3): 0303004. Ren Naifei, Lin Kang, Zhang Zhiyan, Liang Hao, Gao Wenyan, Wang Yibo, Lin Xuechun. Research on Light Absorption Enhancement of Copper by Nanosecond Laser[J]. Chinese Journal of Lasers, 2016, 43(3): 0303004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!