光学学报, 2017, 37 (4): 0423001, 网络出版: 2017-04-10   

星载成像光谱仪退偏器的设计及测试

Design and Test of Depolarizer for Space-Borne Imaging Spectrometer
作者单位
1 中国科学院国家空间科学中心空间环境探测研究室, 北京 100190
2 中国科学院大学, 北京 100049
摘要
为保证星载成像光谱仪测量结果的准确性,设计了双巴比涅退偏器。首先利用电磁波理论及光波传输理论分析了双巴比涅退偏器的工作原理,接着根据偏振光在双折射晶体中的传播公式设计出适当的该退偏器的楔角,最后搭建一套偏振测试装置,对研制完成的双巴比涅退偏器的退偏性能进行测试。测试结果表明:该双巴比涅退偏器在-15~15 ℃入射角范围内具有较好的退偏性能。退偏器楔角选择6°时,能在不影响成像质量的前提下较好地对探测波段退偏,且退偏度不受方位角及频率的影响,退偏度优于99%。该退偏器具有退偏度高、透射比高、性能稳定、体积小等优点。由于测量系统误差,测量不确定度为0.00290。
Abstract
To guarantee the measurement accuracy of the space-borne imaging spectrometer, the dual Babinet compensator pseudo-depolarizer (DBCP) is designed. The principle of the DBCP is analyzed by utilizing the electromagnetic wave theory and light wave transmission theory, and a suitable wedge angle of the DBCP is schemed out based on the formula of polarized light propagation in birefringent crystal. The depolarization performance of the DBCP is worked out with a set-up polarization testing device. The results show that the DBCP has a better depolarization performance within the incidence angle range of -15~15 ℃. When the wedge angle is 6°, the depolarizer can realize depolarization at detection band with degree of depolarization better than 99%. Which is independent of the azimuth angle and frequency, and without affecting the imaging quality. Furthermore, the DBCP has many advantages, such as high degree of depolarization, high transmittance, stable performance and small volume. The uncertainty of measurement is 0.00290, because of the systems error.
参考文献

[1] 王跃明, 郎均慰, 王建宇. 航天高光谱成像技术研究现状及展望[J]. 激光与光电子学进展, 2013, 50(1): 010008.

    Wang Yueming, Lang Junwei, Wang Jianyu. Status and prospect of space-Borne hyperspectral imaging technology[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010008.

[2] 张 达, 郑玉权. 高光谱遥感的发展与应用[J]. 光学与光电技术, 2013, 11(3): 67-73.

    Zhang Da, Zheng Yuquan. Hyperspectral remote sensing and its development and application review[J]. Optics & Optoelectronic Technology, 2013, 11(3): 67-73.

[3] 薛庆生. 空间大气遥感高光谱成像仪光学系统设计[J]. 光学学报, 2014, 34(8): 0822005.

    Xue Qingsheng. Optical system design of multi-model hyperspectral imager for spaced-Based atmospheric remote sensing[J]. Acta Optica Sinica, 2014, 34(8): 0822005.

[4] 赵发财. 空间紫外大气遥感成像光谱仪偏振校正研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012: 17-34.

    Zhao Facai. The study on polarization correction of imaging spectrometer for space-borne ultraviolet atmospheric remote sensing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012: 17-34.

[5] 胡 帅, 高太长, 李 浩, 等. 大气折射对可见近红外波段辐射传输的影响分析[J]. 光学学报, 2016, 36(6): 0601005.

    Hu Shuai, Gao Taichang, Li Hao, et al. Analysis on impact of atmospheric refraction on radiative transfer process at visible and infrared band[J]. Acta Optica Sinica, 2016, 36(6): 0601005.

[6] 张小林. 沙尘气溶胶粒子模型的线退偏比特性[J]. 光学学报, 2016, 36(8): 0829001.

    Zhang Xiaolin. Linear depolarization ratios characteristics of dust aerosol particles model[J]. Acta Optica Sinica, 2016, 36(8): 0829001.

[7] Dobber M R, Dirksen R J, Levelt P F, et al. Ozone monitoring instrument calibration[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(5): 1209-1238.

[8] Yu J, Jiang H B, Yang H, et al. Depolarization of white light generated by femtosecond laser pulse in KDP crystals[J]. Journal of the Optical Society of America B, 2011, 28(6): 1566-1570.

[9] Petrashen A G. Depolarization of radiation upon coherent excitation[J]. Optics and Spectroscopy, 2010, 109(6): 829-832.

[10] de Sande J C, Piquero G, Teijeiro C. Polarization changes at Lyot depolarizer output for different types of input beams[J]. Journal of the Optical Society of America A, 2012, 29(3): 278-284.

[11] 薛庆生, 王淑荣, 李福田. 光栅色散临边成像光谱仪的研究[J]. 光学学报, 2010, 30(5): 1516-1521.

    Xue Qingsheng, Wang Shurong, Li Futian. Study on limb imaging spectrometer with grating dispersion[J]. Acta Optica Sinica, 2010, 30(5): 1516-1521.

[12] 赵发财, 王淑荣, 曲 艺, 等. 星载光栅成像光谱仪的退偏器设计与分析[J]. 光谱学与光谱分析, 2011, 31(7): 1991-1994.

    Zhao Facai, Wang Shurong, Qu Yi, et al. Design and analysis of a depolarizer for the space-borne grating imaging spectrometer[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1991-1994.

[13] 王 磊. 一种新型空间伪退偏器的设计与研究[J]. 光学技术, 2014(3): 209-213.

    Wang Lei. Design and study of a novel spatial pseudodepolarizer[J]. Optical Technique, 2014(3): 209-213.

[14] 廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 12-14.

    Liao Yanbiao. Polarization optics[M]. Beijing: Science Press, 2003: 12-14.

[15] Chipman R A, Mcguire J P. Analysis of spatial pseudodepolarizers in imaging systems[J]. Optical Engineering, 1990, 29(12): 1478-1484.

[16] 任树锋. 晶体双折射退偏器的光波叠加分析方法与优化设计[D]. 山东: 曲阜师范大学, 2014: 48-49.

    Ren Shufeng. Crystal birefringence of depolarization wave superposition method and optimization design[D]. Shandong: Qufu Normal University, 2014: 48-49.

[17] 马科思·玻恩, 埃米尔·沃耳夫. 光学原理[M]. 杨葭荪, 译. 北京: 电子工业出版社, 2005: 78-80.

    Born M, Wolf E. Princeples of optics[M]. YANG Jia sun Transl. Beijing: Publishing House of Electronics Industry, 2005: 78-80.

毛靖华, 王咏梅, 石恩涛, 张仲谋, 王英鉴, 江芳. 星载成像光谱仪退偏器的设计及测试[J]. 光学学报, 2017, 37(4): 0423001. Mao Jinghua, Wang Yongmei, Shi Entao, Zhang Zhongmou, Wang Yingjian, Jiang Fang. Design and Test of Depolarizer for Space-Borne Imaging Spectrometer[J]. Acta Optica Sinica, 2017, 37(4): 0423001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!