中国激光, 2013, 40 (1): 0104001, 网络出版: 2012-12-05   

基于时间相关单光子计数的离线式g-STED超分辨显微术

Super Resolution Microscopy of Offline g-STED Nanoscopy Based on Time-Correlated Single Photon Counting
作者单位
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
摘要
提出了一种离线式基于时间门的荧光受激发射损耗(g-STED)显微方法。基于在强光照条件下荧光寿命缩短的理论模型,在常规STED架构基础上,使用时间相关单光子记数(TCSPC)算法获取图像的荧光寿命信息,离线设置合理的时间门阈值,丢弃短寿命信号数据,对荧光信号有效点扩展函数(PSF)进行压缩,达到超分辨显微的目的。与传统STED显微术相比,此方法所需光功率大幅度降低,减少了荧光漂白及光毒性;离线式处理则同时增加了时间门设置的灵活性。在实验中,使用45 mW的连续STED光,最终获取了约80 nm的图像空间分辨率。进一步对时间门的设置对获取图像信号的分辨率和信噪比的影响进行了讨论。
Abstract
The offline time-gated stimulated emission depletion (g-STED) microscopy, which is based on time-correlated single photon counting (TCSPC) algorithm, is proposed. As STED beam can eliminate the ratio of spontaneous fluorescent emission while reducing the fluorescence lifetime, the lifetime of fluorescent signals in the center of excitation focal spot and that in the surrounding doughnut area which are overlap by the STED focal spot are significant different. Based on this principle, in a general continuous wave STED (CW-STED), the fluorescent lifetimes of the whole imaging region are calculated by TCSPC, and the signals with shorter lifetime are discarded after all data recorded. The effective point spread function (PSF) of each fluorescent labels are shrinked in order to enhance the resolution. Compared with traditional ones, this offline g-STED not only decreases the incident intensity of laser to avoid the risk of fluorescence photobleaching and optical toxicity, but also increases the flexibility of time-gate manipulation. A spatial resolution of 80 nm is obtained in the experiment when only 45 mW STED beam is introduced. The potential influences of time-gate selection to the resolution and signal-to-noise ratio (SNR) are further discussed.
参考文献

[1] E. Abbe, Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archivfür Mikroskopische Anatomie, 1873, 9(1): 413~418

[2] 刘岩, 徐圣奇, 刘伟伟. 基于双光子荧光原理的空气中飞秒激光成丝区域脉冲特性的测量[J]. 光学学报, 2011, 31(7): 0719002

    Liu Yan, Xu Shengqi, Liu Weiwei. Application of two-photon fluorescence measurement on pulse characterization during femtosecond laser filamentation in air[J]. Acta Optica Sinica, 2011, 31(7): 0719002

[3] 张运波, 郑继红, 蒋妍梦 等. 近紫外波段频分复用荧光显微探测技术研究[J]. 光学学报, 2011, 31(6): 0618002

    Zhang Yunbo, Zheng Jihong, Jiang Yanmeng et al.. Near UV-band frequency division multiplexing detecting technique with fluorescence microscopy[J]. Acta Optica Sinica, 2011, 31(6): 0618002

[4] S. W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153~1158

[5] 郝翔, 匡翠方, 李旸晖 等. 可逆饱和光转移过程的荧光超分辨显微术[J]. 激光与光电子学进展, 2012, 49(3): 030005

    Hao Xiang, Kuang Cuifang, Li Yanghui et al.. Reversible saturable optical transitions based fluorescence nanoscopy[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030005

[6] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated-emission-stimulated-emission-depletion fluorescence microscopy[J]. Opt. Lett., 1994, 19(11): 780~782

[7] 郝翔, 匡翠方, 王婷婷 等. 受激发射损耗显微技术中0/π圆形相位板参数优化[J]. 光学学报, 2011, 31(3): 214~217

    Hao Xiang, Kuang Cuifang, Wang Tingting et al.. Optimization of 0/π phase plate in stimulated emission depletion microscopy[J]. Acta Optica Sinica, 2011, 31(3): 214~217

[8] S. Galiani, B. Harke, G. Vicidomini et al.. Strategies to maximize the performance of a STED microscope[J]. Opt. Express, 2012, 20(7): 7362~7374

[9] S. W. Hell, K. I. Willig, B. Harke et al.. STED microscopy with continuous wave beams[J]. Nat. Methods, 2007, 4(11): 915~918

[10] P. Bingen, M. Reuss, J. Engelhardt et al.. Parallelized STED fluorescence nanoscopy[J]. Opt. Express, 2011, 19(24): 23716~23726

[11] 王华英, 王广俊, 赵洁 等. 数字全息显微系统的成像分辨率分析[J]. 中国激光, 2007, 34(12): 1670~1675

    Wang Huaying, Wang Guangjun, Zhao Jie et al.. Imaging resolution analysis of digital holographic microscopy[J]. Chinese J. Lasers, 2007, 34(12): 1670~1675

[12] D. Wildanger, R. Medda, L. Kastrup et al.. A compact STED microscope providing 3D nanoscale resolution[J]. J. Microsc., 2009, 236(1): 35~43

[13] G. Vicidomini, G. Moneron, K. Y. Han et al.. Sharper low-power STED nanoscopy by time gating[J]. Nature Methods, 2011, 8(7): 571~575

[14] 王岩, 赵羚伶, 陈同生 等. 利用基于扫描相机的荧光寿命成像显微技术研究细胞周期[J]. 中国激光, 2011, 38(3): 132~137

    Wang Yan, Zhao Lingling, Chen Tongsheng et al.. Study on cell cycle using fluorescence lifetime imaging microscopic system based on a streak camera[J]. Chinese J. Lasers, 2011, 38(3): 132~137

[15] 刘超, 周燕, 王新伟 等. 荧光寿命成像技术及其研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111102

    Liu Chao, Zhou Yan, Wang Xinwei et al.. Fluorescence lifetime imaging microscopy and its research progress[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111102

[16] E. Fiserova, M. Kubala. Mean fluorescence lifetime and its error[J]. J. Lumin., 2012, 132(8): 2059~2064

[17] T. Iwata, H. Kiyoto, Y. Mizutani et al.. Comparison of pulsed-excitation and phase-modulation methods for estimating fluorescence lifetime values using a convolved-autoregressive model and a high-gain photomultiplier tube[J]. Opt. Rev., 2010, 17(6): 513~518

[18] N. Joshi, V. O. de Joshi, S. Contreras et al.. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin[C]. SPIE, 1999, 3602: 124~131

[19] C. Eggeling, A. Honigmann, M. Schulze. gSTED microscopy with an OPSL: cutting edge super-resolution[J]. Optik & Photonik, 2012, 7(2): 44~46

郝翔, 匡翠方, 顾兆泰, 李帅, 刘旭. 基于时间相关单光子计数的离线式g-STED超分辨显微术[J]. 中国激光, 2013, 40(1): 0104001. Hao Xiang, Kuang Cuifang, Gu Zhaotai, Li Shuai, Liu Xu. Super Resolution Microscopy of Offline g-STED Nanoscopy Based on Time-Correlated Single Photon Counting[J]. Chinese Journal of Lasers, 2013, 40(1): 0104001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!