中国激光, 2016, 43 (9): 0902001, 网络出版: 2018-05-25  

光纤激光-变极性TIG复合填丝焊接A7N01铝合金接头的组织与力学性能

Microstructure and Mechanical Property of A7N01 Aluminum Alloy Joints by Fiber Laser-Variable Polarity TIG Hybrid Welding with Filler Wire
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
采用光纤激光与变极性钨极惰性气体复合填丝焊接A7N01铝合金,经工艺参数优化,得到了成形良好、无缺陷的焊接接头。研究了这些接头的显微组织、拉伸和疲劳性能,并分析了疲劳断裂特征及断口形貌。研究结果表明,接头主要由细晶区、柱状晶和等轴树枝晶组成;焊态下接头抗拉强度均值为320 MPa,约为母材的75%;自然时效30天后,抗拉强度均值提高到369 MPa,达到母材的83%;断裂位置位于焊趾应力集中处,拉伸断口呈明显的韧窝状,为典型的韧性断裂;接头的疲劳极限为115 MPa。
Abstract
By the hybrid technique of fiber laser and variable polarity tungsten inert gas, A7N01 aluminum alloy is welded with filler wire. After optimizing process parameters, joints with good formation and without defects are obtained. The microstructure, tensile and fatigue properties of these joints are investigated, and the fatigue-fracture characteristic and fracture morphology are examined. The research results indicate that these joints are mainly composed of fine-grained zone, columnar grains, and equiaxed dendrites. The average tensile strength of these as-welded joints is 320 MPa, around 75% of that of base metals. After natural aging of 30 days, the average tensile strength increases to 369 MPa, around 83% of that of base metals. Fractures locate at the stress concentration zone of the weld toe, and the fracture shows an obvious dimple shape, which is the unique characteristic of ductile fracture. The fatigue limit of these joints is 115 MPa.
参考文献

[1] Nakai M, Eto T. New aspects of development of high strength aluminum alloys for aerospace applications[J]. Materials Science and Engineering: A, 2000, 285(1): 62-68.

[2] 邓波, 钟毅, 起华荣, 等. 7N01铝合金高速反向挤压实验研究[J]. 云南冶金, 2006, 35(4): 50-52.

    Deng Bo, Zhong Yi, Qi Huarong, et al. Experiment on high speed reverse-extrusion of 7N01 aluminum alloy[J]. Yunnan Metallurgy, 2006, 35(4): 50-52.

[3] 刘君城, 金龙兵, 何振波, 等. 7N01铝合金热压缩流变行为研究[J]. 稀有金属, 2011, 35(6): 812-817.

    Liu Juncheng, Jin Longbin, He Zhenbo, et al. Hot deformation behavior of 7N01 aluminum alloy[J]. Chinese Journal of Rare Metals, 2011, 35(6): 812-817.

[4] Kalita S J. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351[J]. Applied Surface Science, 2011, 257(9): 3985-3997.

[5] 左铁钏. 高强铝合金的激光加工[M]. 北京: 国防工业出版社, 2008.

    Zuo Tiechuan. Laser materials processing of high strength aluminum alloys[M]. Beijing: National Defense Industry Press, 2008.

[6] 朱加雷, 徐世龙, 焦向东, 等. 304不锈钢薄板激光搭接焊工艺研究[J]. 激光与光电子学进展, 2015, 52(7): 071404.

    Zhu Jialei, Xu Shilong, Jiao Xiangdong, et al. Study on laser lap welding of 304 stainless steel sheet[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071404.

[7] 刘东宇, 李东, 李凯斌, 等. 相同激光线能量对焊缝组织和性能的影响[J]. 激光与光电子学进展, 2015, 52(10): 101404.

    Liu Dongyu, Li Dong, Li Kaibin, et al. Influence of laser with same line energy on the microstructure and properties of welded[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101404.

[8] Gao M, Zeng X Y, Yan J, et al. Microstructure characteristics of laser-MIG hybrid welded mild steel[J]. Applied Surface Science, 2008, 254(18): 5715-5721.

[9] 陶传琦, 汪认, 崔云龙. 15 mm厚A7N01铝合金MIG与激光-MIG复合焊接对比[J]. 电焊机, 2015, 45(1): 108-110.

    Tao Chuanqi, Wang Ren, Cui Yunlong. Comparison of 15 mm thick A7N01 aluminum alloy MIG with laser-MIG composite welding[J]. Electric Welding Machine, 2015, 45(1): 108-110.

[10] 王晓南, 陈长军, 朱广江, 等. 钢铁材料激光-电弧复合焊接技术研究进展[J]. 激光与光电子学进展, 2014, 51(3): 030008.

    Wang Xiaonan, Chen Changjun, Zhu Guangjiang, et al. Research progress on laser-arc hybrid welding of steel[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030008.

[11] Vaidya W V, Angamuthu K, Koak M, et al. Strength and fatigue resistance of laser-MIG hybrid butt welds of an airframe aluminium ally AA6013[J]. Welding in the World, 2006, 50(11): 88-97.

[12] Yan S H, Nie Y, Zhu Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298(15): 12-18.

[13] Ghosh P K, Gupta S R, Gupta P C, et al. Fatigue characteristics of pulsed MIG welded Al-Zn-Mg alloy[J]. Journal of Materials, 1991, 26(22): 616l-6170.

[14] 李飞. 5083 铝合金光纤激光-变极性TIG复合焊接工艺及机理研究[D]. 北京: 北京工业大学, 2014.

    Li Fei. Study on the technology and mechanism of 5083 aluminum alloy fiber laser TIG hybrid welding[D]. Beijing: Beijing University of Technology, 2014.

[15] 王启明, 乔俊楠, 邹江林, 等. A7N01铝合金光纤激光-变极性TIG复合填丝焊接工艺研究[J]. 中国激光, 2016, 43(6): 0602004.

    Wang Qiming, Qiao Junnan, Zou Jianglin, et al. Fiber laser-VPTIG hybrid welding of A7N01 aluminum alloy with filler wire[J]. Chinese J Lasers, 2016, 43(6): 0602004.

[16] 孔晓芳, 李飞, 吕俊霞, 等. 5083铝合金光纤激光填丝焊接工艺[J]. 中国激光, 2014, 41(10): 1003007.

    Kong Xiaofang, Li Fei, Lü Junxia, et al. Welding process of 5083 aluminum alloy fiber laser with filler wire[J]. Chinese J Lasers, 2014, 41(10): 1003007.

[17] Berg L K, Gjnnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materiialia, 2001, 49(17): 3443-3451.

[18] 张建波, 张永安, 何振波, 等. 自然时效对7N01铝合金组织和性能的影响[J]. 稀有金属, 2012, 36(2): 191-195.

    Zhang Jianbo, Zhang Yong′an, He Zhenbo, et al. Effect of natural aging on microstructure and properties of 7N01 aluminum alloy[J]. Rare Metals, 2012, 36(2): 191-195.

[19] 邬沛卿. 热处理制度对7N01铝合金性能的影响[D]. 长沙: 中南大学, 2000.

    Wu Peiqing. Effect of heat treatment on the properties of 7N01 aluminum alloy[D]. Changsha: Central South University, 2000.

[20] Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Material & Design, 2002, 23(2): 129-139.

乔俊楠, 王启明, 邹江林, 吴世凯. 光纤激光-变极性TIG复合填丝焊接A7N01铝合金接头的组织与力学性能[J]. 中国激光, 2016, 43(9): 0902001. Qiao Junnan, Wang Qiming, Zou Jianglin, Wu Shikai. Microstructure and Mechanical Property of A7N01 Aluminum Alloy Joints by Fiber Laser-Variable Polarity TIG Hybrid Welding with Filler Wire[J]. Chinese Journal of Lasers, 2016, 43(9): 0902001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!