中国光学, 2018, 11 (1): 31, 网络出版: 2018-03-15   

纳米尺度下的局域场增强研究进展

Advances in the local field enhancement at nanoscale
作者单位
1 长春理工大学 理学院, 吉林 长春 130022
2 深圳大学 光电工程学院, 广东 深圳 518060
引用该论文

任升, 刘丽炜, 李金华, 胡思怡, 任玉, 王玥, 修景锐. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1): 31.

REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31.

参考文献

[1] ZIELINSKI M,WINTER S,KOLKOWSKI R,et al.. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures[J]. Opt. Express,2011,19(7): 6657-6670.

[2] WANG SH W,QIAN J,HE S L,et al.. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Ivyspring. Theranostics,2015,5(3): 251-266.

[3] ZHUANG Z Y,YANG Q,ZHANG Z M,et al.. A highly selective fluorescent probe for hydrogen peroxide and its applications in living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry,2017,344: 8-14.

[4] MANDAL K,JANA D,GHORAI B,et al.. Fluorescent imaging probe from nanoparticle made of aie molecule[J]. Phys. Chem. C,2016,120(9): 5196-5206.

[5] XU Q,HEO CH,JIN A K,et al.. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem.,2016,88(12): 6615-6620.

[6] KAURANEN M,ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics,2012,6(11): 737-748.

[7] JASSIM N M,WANG K,HAN X,et al.. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires[J]. Optical Materials,2017,64: 257-261.

[8] 王马华, 朱光平, 居勇峰, 等.纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J].发光学报, 2015, 36(6): 617-622.

    WANG M H,ZHU G P,JU Y F,et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chinese J. Luminescence,2015,36(6): 617-622.(in Chinese)

[9] 朱华, 颜振东, 詹鹏, 等.局域表面等离激元诱导的三次谐波增强效应[J].物理学报, 2013,62(17): 178104.

    ZHU H,YAN ZH D,ZHAN P,et al.. Third harmonic generation enhancement effect induced by local surface plasmon[J]. Acta Phys. Sin.,2013,62(17): 178104.(in Chinese)

[10] W YE,W ZHANG,S WANG,et al.. Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles[J]. Optics Communications,2017,395: 175-182.

[11] KUMAR A,DIXIT T,PALANI I A,et al.. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor[J]. Physica E: Low-dimensional Systems and Nanostructures,2017,93: 97-104.

[12] AGHLARA H,ROSTAMI R,MAGHOUL A,et al.. Noble metal nanoparticle surface plasmon resonance in absorbing medium[J]. Optik-International Journal for Light and Electron Optics,2015,126(4): 417-420.

[13] SAFONOV A L,SULYAEVA V S,TIMOSHENKO N I,et al.. Deposition of thin composite films consisting of fluoropolymer and silver nanoparticles having surface plasmon resonance[J]. Thin Solid Films,2016,603: 313-316.

[14] YAN L,YAN Y,XU L,et al. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology[J]. Applied Surface Science,2016,367: 563-568.

[15] 薛彬, 孔祥贵, 王丹, 等.785 nm激光诱导银纳米三角片聚集表面增强拉曼散射效应[J].中国光学, 2014, 7(1): 118-123.

    XUE B,KONG X G,WANG D,et al.. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics,2014,7(1): 118-123.(in Chinese)

[16] 封昭, 周骏, 陈栋, 等.基于金/银纳米三明治结构SERS特性的超灵敏前列腺特异性抗原检测[J].发光学报, 2015, 36(9): 1064-1070.

    FENG ZH,ZHOU J,CHEN D,et al.. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese J. Luminescence,2015,36(9): 1064-1070.(in Chinese)

[17] 李晓坤, 张友林, 孔祥贵.Ag纳米粒子聚集体的SiO2包覆及其SERS效应[J].发光学报, 2014, 35(7): 853-857.

    LI X K,ZHANG Y L,KONG X G. Aggregation of Ag nanoparticles coated with silica and its SERS effect[J]. Chinese J. Luminescence,2014,35(7): 853-857.(in Chinese)

[18] SNNICHSEN C,ALIVISATOS A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Lett.,2005,5(2): 301-304.

[19] MURPHY C J,SAU T K,GOLE A M,et al.. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications[J]. Phys. Chem. B,2005,109(29): 13857-13870.

[20] JIA K,YUAN L,ZHOU X,et al.. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots[J]. RSC Adv.,2015,5: 58163-58170.

[21] ZHU J,CHANG H,LI J J,et al.. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury(II)[J]. Molecular and Biomolecular Spectroscopy,2017.

[22] ZHANG R,ZHOU Y,PENG L,et al.. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures[J]. Scientific Reports,2016,6: 25036.

[23] ZHU J,REN Y,ZHAO S,et al.. The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell[J]. Materials Chemistry and Physics,2012,133(2-3): 1060-1065.

[24] JIANG N,DMITRY KUROUSKI,POZZI E A,et al.. Tip-enhanced Raman spectroscopy: from concepts to practical applications[J]. Chemical Physics Letters,2016,659: 16-24.

[25] GAURAV SHARMA,VOLKER DECKERT,et al.. Tip-enhanced Raman scattering-Targeting structure-specific surface characterization for biomedical samples[J]. Advanced Drug Delivery Reviews,2015,89: 42-56.

[26] JUNG Y,CHEN H,TONG L,et al.. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing[J]. Journal of Physical Chemistry C,2009,113(7): 2657-2663.

[27] MLLER M,KRAVTSOV V,PAARMANN A,et al.. A nanofocused plasmon-driven sub-10 femtosecond electron point source[J]. ACS Photonics,2016,3(4): 611-619.

[28] KRAVTSOV V,ULBRICHT R,ATKIN J M,et al.. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology,2016,11(5): 459-464.

[29] SHALIN A S,SUKHOV S V,KRASNUK A E,et al.. Plasmonic nanostructures for local field enhancement in the UV region[J]. Photonics and Nanostructures-Fundamentals and Applications,2014,12(1): 2-8.

[30] ZHENG G,M HLENBERND H,KENEY M,et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology,2015,10(4): 308-312.

[31] JIN B,ARGYROPOULOS C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports,2016,6: 28746.

[32] SCHMIDT R,SLOBOZHANYUK A,BELOV P,et al.. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific Reports,2017,7: 1678.

[33] JE SIPE,RW BOYD,Nanocomposite materials for nonlinear optics based on local field effects[J]. Springer Berlin Heidelberg,2002,82(4): 1-19.

[34] RW BOYD,JE SIPE,et al.. Nonlinear optical properties of nanocomposite materials[J]. Pure & Applied Optics Journal of the European Optical Society Part A,1996,5(5): 505.

[35] GHIMIRE S,DICHIARA A D,SISTRUNK E,et al.. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics,2011,7(2): 138-141.

[36] HAN S,KIM H,YONG W K,et al.. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications,2016,7: 13105.

[37] VAMPA G,GHAMSARI B G,HAMMOND T J,et al.. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics,2017,13: 659-662.

[38] 帕拉斯·N·普拉萨德.纳米光子学[M].西安: 西安交通大学出版社, 2010.

    PARAS N. PRASAD. Nanophotonics[M]. Xi′an: Xi′an Jiaotong University Press,2010.

[39] ZHU W,ESTEBAN R,BORISOV A G,et al.. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications,2016,7: 11495.

任升, 刘丽炜, 李金华, 胡思怡, 任玉, 王玥, 修景锐. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1): 31. REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!