中国光学, 2018, 11 (1): 31, 网络出版: 2018-03-15   

纳米尺度下的局域场增强研究进展

Advances in the local field enhancement at nanoscale
作者单位
1 长春理工大学 理学院, 吉林 长春 130022
2 深圳大学 光电工程学院, 广东 深圳 518060
摘要
金属纳米颗粒的等离激元共振引起的局域场增强效应, 对显微成像、光谱学、半导体器件、非线性光学等诸多领域都具有极大的应用潜力。尤其是在光学纳米材料领域, 通过亚波长金属纳米颗粒与电介质的组合引起局域场增强效应, 提高了纳米材料的光学性能, 并促进纳米材料在光学领域的应用。本文主要综述几种常见纳米结构所产生的局域场增强效应及其应用, 详细介绍并总结了金属纳米材料的不同结构参数与局域场增强的关系及局域场增强在非线性光学、光谱学、半导体器件等领域的应用。未来, 随着对金属纳米材料的研究愈发深入, 局域场增强的应用将更加广泛, 这将对诸多领域的发展产生重要影响。
Abstract
Local field enhancement(LFE) based on the plasmon resonance characteristics of metal nanoparticles has great potential in many fields such as microscopy, spectroscopy, semiconductor devices and nonlinear optics. Especially in the field of optical nanomaterials, local field enhancement effect can be produced by the combination of sub-wavelength metal nanoparticles and dielectrics to improve the optical properties of nanomaterials and promote the application of nanomaterials in the field of optics. In this paper, the local field enhancement effect of several common nanostructures and their applications is mainly reviewed. The relationship between different structural parameters of metal nanomaterials and the local field enhancement and the application of local field enhancement in nonlinear optics, spectroscopy, semiconductor devices are introduced and summarized. It is foreseeable that in the future, as the research on metal nanomaterials progresses, the application of localized field enhancement will be more extensive, which have a significant impact on the development of many fields.
参考文献

[1] ZIELINSKI M,WINTER S,KOLKOWSKI R,et al.. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures[J]. Opt. Express,2011,19(7): 6657-6670.

[2] WANG SH W,QIAN J,HE S L,et al.. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging[J]. Ivyspring. Theranostics,2015,5(3): 251-266.

[3] ZHUANG Z Y,YANG Q,ZHANG Z M,et al.. A highly selective fluorescent probe for hydrogen peroxide and its applications in living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry,2017,344: 8-14.

[4] MANDAL K,JANA D,GHORAI B,et al.. Fluorescent imaging probe from nanoparticle made of aie molecule[J]. Phys. Chem. C,2016,120(9): 5196-5206.

[5] XU Q,HEO CH,JIN A K,et al.. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem.,2016,88(12): 6615-6620.

[6] KAURANEN M,ZAYATS A V. Nonlinear plasmonics[J]. Nature Photonics,2012,6(11): 737-748.

[7] JASSIM N M,WANG K,HAN X,et al.. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires[J]. Optical Materials,2017,64: 257-261.

[8] 王马华, 朱光平, 居勇峰, 等.纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J].发光学报, 2015, 36(6): 617-622.

    WANG M H,ZHU G P,JU Y F,et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chinese J. Luminescence,2015,36(6): 617-622.(in Chinese)

[9] 朱华, 颜振东, 詹鹏, 等.局域表面等离激元诱导的三次谐波增强效应[J].物理学报, 2013,62(17): 178104.

    ZHU H,YAN ZH D,ZHAN P,et al.. Third harmonic generation enhancement effect induced by local surface plasmon[J]. Acta Phys. Sin.,2013,62(17): 178104.(in Chinese)

[10] W YE,W ZHANG,S WANG,et al.. Effect of sapphire substrate on the localized surface plasmon resonance of aluminum triangular nanoparticles[J]. Optics Communications,2017,395: 175-182.

[11] KUMAR A,DIXIT T,PALANI I A,et al.. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor[J]. Physica E: Low-dimensional Systems and Nanostructures,2017,93: 97-104.

[12] AGHLARA H,ROSTAMI R,MAGHOUL A,et al.. Noble metal nanoparticle surface plasmon resonance in absorbing medium[J]. Optik-International Journal for Light and Electron Optics,2015,126(4): 417-420.

[13] SAFONOV A L,SULYAEVA V S,TIMOSHENKO N I,et al.. Deposition of thin composite films consisting of fluoropolymer and silver nanoparticles having surface plasmon resonance[J]. Thin Solid Films,2016,603: 313-316.

[14] YAN L,YAN Y,XU L,et al. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology[J]. Applied Surface Science,2016,367: 563-568.

[15] 薛彬, 孔祥贵, 王丹, 等.785 nm激光诱导银纳米三角片聚集表面增强拉曼散射效应[J].中国光学, 2014, 7(1): 118-123.

    XUE B,KONG X G,WANG D,et al.. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics,2014,7(1): 118-123.(in Chinese)

[16] 封昭, 周骏, 陈栋, 等.基于金/银纳米三明治结构SERS特性的超灵敏前列腺特异性抗原检测[J].发光学报, 2015, 36(9): 1064-1070.

    FENG ZH,ZHOU J,CHEN D,et al.. Hypersensitization immunoassay of prostate-specific antigen based on SERS of sandwich-type Au/Ag nanostructure[J]. Chinese J. Luminescence,2015,36(9): 1064-1070.(in Chinese)

[17] 李晓坤, 张友林, 孔祥贵.Ag纳米粒子聚集体的SiO2包覆及其SERS效应[J].发光学报, 2014, 35(7): 853-857.

    LI X K,ZHANG Y L,KONG X G. Aggregation of Ag nanoparticles coated with silica and its SERS effect[J]. Chinese J. Luminescence,2014,35(7): 853-857.(in Chinese)

[18] SNNICHSEN C,ALIVISATOS A. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy[J]. Nano Lett.,2005,5(2): 301-304.

[19] MURPHY C J,SAU T K,GOLE A M,et al.. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications[J]. Phys. Chem. B,2005,109(29): 13857-13870.

[20] JIA K,YUAN L,ZHOU X,et al.. One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots[J]. RSC Adv.,2015,5: 58163-58170.

[21] ZHU J,CHANG H,LI J J,et al.. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury(II)[J]. Molecular and Biomolecular Spectroscopy,2017.

[22] ZHANG R,ZHOU Y,PENG L,et al.. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures[J]. Scientific Reports,2016,6: 25036.

[23] ZHU J,REN Y,ZHAO S,et al.. The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell[J]. Materials Chemistry and Physics,2012,133(2-3): 1060-1065.

[24] JIANG N,DMITRY KUROUSKI,POZZI E A,et al.. Tip-enhanced Raman spectroscopy: from concepts to practical applications[J]. Chemical Physics Letters,2016,659: 16-24.

[25] GAURAV SHARMA,VOLKER DECKERT,et al.. Tip-enhanced Raman scattering-Targeting structure-specific surface characterization for biomedical samples[J]. Advanced Drug Delivery Reviews,2015,89: 42-56.

[26] JUNG Y,CHEN H,TONG L,et al.. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing[J]. Journal of Physical Chemistry C,2009,113(7): 2657-2663.

[27] MLLER M,KRAVTSOV V,PAARMANN A,et al.. A nanofocused plasmon-driven sub-10 femtosecond electron point source[J]. ACS Photonics,2016,3(4): 611-619.

[28] KRAVTSOV V,ULBRICHT R,ATKIN J M,et al.. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging[J]. Nature Nanotechnology,2016,11(5): 459-464.

[29] SHALIN A S,SUKHOV S V,KRASNUK A E,et al.. Plasmonic nanostructures for local field enhancement in the UV region[J]. Photonics and Nanostructures-Fundamentals and Applications,2014,12(1): 2-8.

[30] ZHENG G,M HLENBERND H,KENEY M,et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology,2015,10(4): 308-312.

[31] JIN B,ARGYROPOULOS C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces[J]. Scientific Reports,2016,6: 28746.

[32] SCHMIDT R,SLOBOZHANYUK A,BELOV P,et al.. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific Reports,2017,7: 1678.

[33] JE SIPE,RW BOYD,Nanocomposite materials for nonlinear optics based on local field effects[J]. Springer Berlin Heidelberg,2002,82(4): 1-19.

[34] RW BOYD,JE SIPE,et al.. Nonlinear optical properties of nanocomposite materials[J]. Pure & Applied Optics Journal of the European Optical Society Part A,1996,5(5): 505.

[35] GHIMIRE S,DICHIARA A D,SISTRUNK E,et al.. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics,2011,7(2): 138-141.

[36] HAN S,KIM H,YONG W K,et al.. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications,2016,7: 13105.

[37] VAMPA G,GHAMSARI B G,HAMMOND T J,et al.. Plasmon-enhanced high-harmonic generation from silicon[J]. Nature Physics,2017,13: 659-662.

[38] 帕拉斯·N·普拉萨德.纳米光子学[M].西安: 西安交通大学出版社, 2010.

    PARAS N. PRASAD. Nanophotonics[M]. Xi′an: Xi′an Jiaotong University Press,2010.

[39] ZHU W,ESTEBAN R,BORISOV A G,et al.. Quantum mechanical effects in plasmonic structures with subnanometre gaps[J]. Nature Communications,2016,7: 11495.

任升, 刘丽炜, 李金华, 胡思怡, 任玉, 王玥, 修景锐. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1): 31. REN Sheng, LIU Li-wei, LI Jin-hua, HU Si-yi, REN Yu, WANG Yue, XIU Jing-rui. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!