激光与光电子学进展, 2017, 54 (12): 120004, 网络出版: 2017-12-11   

移动量子密钥分发技术进展 下载: 909次

Progress in Mobile Quantum Key Distribution Technique
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
摘要
量子信号在大气信道中传输的可行性已经在多个实验中得到了证实。将量子通信终端搭载到移动平台被认为是量子通信实用化的重要发展之一, 可满足全球量子保密网络构建和**通信领域高保密性等需求。综述了量子密钥在地面与移动平台之间的分发所涉及的关键技术, 介绍了移动量子密钥分发技术目前的发展状况与难点, 并探讨了下一步实用化发展方向。
Abstract
The feasibility for the quantum signals transmission in the atmospheric channels has been demonstrated in many experiments. The quantum communication terminals are added to mobile platforms, which is considered as one of the most significant practicable applications and can satisfy the requirements of the construction of global quantum secure networks, the strict security of military communications, and so on. The crucial technologies involved in the quantum key distributions between the ground and the mobile platforms are reviewed. The current status and challenges in the development of mobile quantum key distribution technique are introduced and the development direction for the practicable applications is also discussed.
参考文献

[1] Rosenberg D, Peterson C G, Harrington J W, et al. Practical long-distance quantum key distribution system using decoy levels[J]. New Journal of Physics, 2009, 11(4): 045009.

[2] Yin H L, Chen T Y, Yu Z W, et al. Measurement device independent quantum key distribution over 404 km optical fibre[J]. Physical Review Letters, 2016, 117(19): 190501.

[3] Wang J Y, Yang B, Liao S K, et al. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution[J]. Nature Photonics, 2012, 7(5): 387-393.

[4] Nauerth S, Moll F, Rau M, et al. Air to ground quantum key distribution[C]. SPIE, 2012, 8518: 85180D.

[5] Bourgoin J P, Higgins B L, Gigov N, et al. Free-space quantum key distribution to a moving receiver[J]. Optics Express, 2015, 23(26): 33437-33447.

[6] Raska M. China′s quantum satellite experiments: strategic and military implications[EB/OL]. (2016-09-05)[2017-03-20]. http://www.rsis.edu.sg/rsis-publication/rsis/co16223-chinas-quantum-satellite-experiments-strategic-and-military-implications/

[7] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.

[8] 周强, 刘金璐, 谷远辉, 等. 量子保密通信用增益开关半导体脉冲激光器[J]. 中国激光, 2016, 43(5): 0502005.

    Zhou Qiang, Liu Jinlu, Gu Yuanhui, et al. Gain-switched semiconductor pulsed laser for quantum secure communication[J]. Chinese J Lasers, 2016, 43(5): 0502005.

[9] Beveratos A, Brouri R, Gacoin T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18): 187901.

[10] Liu Y, Siyushev P, Rong Y, et al. Investigation of the silicon vacancy color center for quantum key distribution[J]. Optics Express, 2015, 23(26): 32961-32967.

[11] Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 2000, 407(6803): 491-493.

[12] Zhu S E, Kuang Y M, Geng F, et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence[J]. Journal of the American Chemical Society, 2013, 135(42): 15794-15800.

[13] Michler P, Imamoglu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 2000, 406(6799): 968-970.

[14] Stevenson R M, Young R J, Atkinson P, et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 2006, 439(7073): 179-182.

[15] He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217.

[16] 李婷, 马小龙, 李福, 等. 卡塞格伦光学天线杂散光分析与测试[J]. 光子学报, 2015, 44(8): 0806002.

    Li Ting, Ma Xiaolong, Li Fu, et al. Stray light analysis and test of Cassegrain optical antenna[J]. Acta Photonica Sinica, 2015, 44(8): 0806002.

[17] 胡晓东, 丁小昆, 王维科, 等. 用于星敏感器的马蹄形卡塞格伦反射式光学系统杂散光抑制方法[J]. 中国惯性技术学报, 2016, 24(2): 175-179.

    Hu Xiaodong, Ding Xiaokun, Wang Weike, et al. Stray radiation suppression of horseshoe Cassegrain reflecting optical system for star sensor[J]. Journal of Chinese Inertial Technology, 2016, 24(2): 175-179.

[18] 闫佩佩, 樊学武. 大相对孔径甚高精度星敏感器光学系统设计[J]. 激光与光电子学进展, 2011, 48(9): 092202.

    Yan Peipei, Fan Xuewu. Design of optical system of very high precision star sensor with small F-number[J]. Laser & Optoelectronics Progress, 2011, 48(9): 092202.

[19] 薛庆生. 折反式大口径星敏感器光学设计及杂散光分析[J]. 光学学报, 2016, 36(2): 0222001.

    Xue Qingsheng. Optical design and stray light analysis for large aperture catadioptric star sensor[J]. Acta Optica Sinica, 2016, 36(2): 0222001.

[20] Townes S A, Edwards B L, Biswas A, et al. The mars laser communication demonstration[C]. IEEE Aerospace Conference Proceedings, 2004, 2: 1180-1195.

[21] Jono T, Takayama Y, Kura N, et al. OICETS on-orbit laser communication experiments[C]. SPIE, 2006, 6105: 610503.

[22] Fields R, Lunde C, Wong R, et al. NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance[C]. SPIE, 2009, 7330: 73300Q.

[23] 张辉, 陈云善, 耿天文, 等. 四象限探测器位置检测精度的主要影响因素研究[J]. 中国激光, 2015, 42(12): 1217002.

    Zhang Hui, Chen Yunshan, Geng Tianwen, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J]. Chinese J Lasers, 2015, 42(12): 1217002.

[24] 张军强, 谢飞, 薛庆生, 等. 基于四象限探测器的激光导引镜头的研制[J]. 中国光学, 2015, 8(3): 471-479.

    Zhang Junqiang, Xie Fei, Xue Qingsheng, et al. Laser guided lens based on four-quadrant detector[J]. Chinese Optics, 2015, 8(3): 471-479.

[25] 谭立英, 吴世臣, 韩琦琦, 等. 潜望镜式卫星光通信终端的CCD粗跟踪[J]. 光学 精密工程, 2012, 20(2): 270-276.

    Tan Liying, Wu Shichen, Han Qiqi, et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 2012, 20(2): 270-276.

[26] 刘彦飞, 代永红, 单欣, 等. 高帧频CMOS相机对光通信精跟踪系统影响分析[J]. 仪器仪表学报, 2015, 36(6): 1319-1325.

    Liu Yanfei, Dai Yonghong, Shan Xin, et al. Analysis of the impact of high frame frequency CMOS camera on optical communication fine tracking system[J]. Chinese Journal of Scientific Instrument, 2015, 36(6): 1319-1325.

[27] 程智, 董登峰, 周维虎, 等. 基于位置敏感器件的高精度激光位置检测系统[J]. 激光与光电子学进展, 2016, 53(8): 081202.

    Cheng Zhi, Dong Dengfeng, Zhou Weihu, et al. High precision laser position detecting system based on position sensitive device[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081202.

[28] 王夏菁, 郑佩祥, 李超, 等. 一种基于位置敏感器相位检测的振动测量方法[J]. 光电子·激光, 2014, 25(9): 1765-1770.

    Wang Xiajing, Zheng Peixiang, Li Chao, et al. A vibration measuring method based on phase detection by position sensitive detector[J]. Journal of Optoelectronics·Laser, 2014, 25(9): 1765-1770.

[29] 曹洪瑞, 刘永凯, 张淑梅. 基于快速反射镜的自适应控制算法研究[J]. 传感器与微系统, 2017, 36(1): 16-19.

    Cao Hongrui, Liu Yongkai, Zhang Shumei. Adaptive control algorithm research based on fast steering mirror[J]. Transducer and Microsystem Technologies, 2017, 36(1): 16-19.

[30] 崔宁, 陈兴林, 曹开锐, 等. 空间光通信精跟踪系统的模糊自抗扰控制[J]. 光学 精密工程, 2015, 23(5): 1394-1400.

    Cui Ning, Chen Xinglin, Cao Kairui, et al. Fuzzy active disturbance rejection control of fine tracking system for free space optical communication[J]. Optics and Precision Engineering, 2015, 23(5): 1394-1400.

[31] 胡贞, 姜会林, 佟首峰. 滑模控制对激光通信ATP系统跟踪性能的改善[J]. 北京理工大学学报, 2012, 32(5): 522-525.

    Hu Zhen, Jiang Huilin, Tong Shoufeng. Improvement of ATP system tracking performance of laser communication using sliding mode control[J]. Transactions of Beijing Institute of Technology, 2012, 32(5): 522-525.

[32] 魏强, 张承进, 张栋,等. 压电陶瓷驱动器的滑模神经网络控制[J]. 光学 精密工程, 2012, 20(5): 1055-1063.

    Wei Qiang, Zhang Chengjin, Zhang Dong, et al. Neural network control for piezo-actuator using sliding-mode technique[J]. Optics and Precision Engineering, 2012, 20(5): 1055-1063.

[33] 梁捷, 陈力. 漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动的RBF神经网络控制[J]. 航空学报, 2013, 34(4): 970-978.

    Liang Jie, Chen Li.Dynamics modeling for free-floating space-based robot during satellite capture and RBF neural network control for compound body stable movement[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(4): 970-978.

[34] Kuang C, Feng Q, Zhang B, et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and Actuators A, 2005, 125(1): 100-108.

[35] Luo D, Kuang C, Hao X, et al. High-precision laser alignment technique based on spiral phase plate[J]. Optics and Lasers in Engineering, 2012, 50(7): 944-949.

[36] 黄向东, 于文波, 谭久彬. 二维位移测量中激光漂移实时补偿方法研究[J]. 光电子·激光, 2014, 25(2): 299-304.

    Huang Xiangdong, Yu Wenbo, Tan Jiubin. Study on real-time compensation method for laser drift in 2D displacement measurement[J]. Journal of Optoelectronics·Laser, 2014, 25(2): 299-304.

[37] Zhang L, Wang R, Lin W, et al. Compensation method for random drifts of laser beams based on moving average feedback control[C]. SPIE, 2012, 8417: 84170Q.

[38] 李结安, 谭久彬, 崔继文. 基于滤波的准直光束漂移反馈补偿方法研究[J]. 光电子·激光, 2013, 24(2): 336-342.

    Li Jiean, Tan Jiubin, Cui Jiwen. Study on method of feedback compensation drift of collimation beam based on filter[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 336-342.

[39] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射[J]. 物理学报, 2014, 63(17): 174204.

    Zhao Hao, Shen Yifeng, Zhang Zhongjie. Collimating emission from photonic crystals based on the quasi-zero-effective-index[J]. Acta Physica Sinica, 2014, 63(17): 174204.

[40] Buttler W T, Hughes R J, Kwiat P G, et al. Free-space quantum-key distribution[J]. Physical Review A, 1998, 57(4): 2379.

[41] Toyoshima M, Takayama Y, Kunimori H, et al. Development of the polarization tracking scheme for free-space quantum cryptography[C]. SPIE, 2008, 6951: 69510I.

[42] Chen J, Wu G, Li Y, et al. Active polarization stabilization in optical fibers suitable for quantum key distribution[J]. Optics Express, 2007, 15(26): 17928-17936.

[43] Ma L, Tang X. Polarization recovery and auto-compensation in quantum key distribution network[C]. SPIE, 2006, 6305: 630513.

[44] Chen J, Wu G, Xu L, et al. Stable quantum key distribution with active polarization control based on time-division multiplexing[J]. New Journal of Physics, 2009, 11(6): 065004.

[45] Xavier G B, Walenta N, De Faria G V, et al. Experimental polarization encoded quantum key distribution over optical fibers with real-time continuous birefringence compensation[J]. New Journal of Physics, 2009, 11(4): 045015.

[46] Miao E L, Han Z F, Gong S S, et al. Background noise of satellite-to-ground quantum key distribution[J]. New Journal of Physics, 2005, 7(1): 215.

[47] 冯斌, 史泽林, 徐保树, 等. 面向大气背景光抑制的金属光栅偏振片效能表征及设计[J]. 光学学报, 2015, 35(12): 1201003.

    Feng Bin, Shi Zelin, Xu Baoshu, et al. Performance characterization and design of wire grid polarizer applied to airlight rejection[J]. Acta Optica Sinica, 2015, 35(12): 1201003.

[48] Vallone G, Bacco D, Dequal D, et al. Experimental satellite quantum communications[J]. Physical Review Letters, 2015, 115(4): 040502.

朱宇, 石磊, 魏家华, 薛阳, 罗均文. 移动量子密钥分发技术进展[J]. 激光与光电子学进展, 2017, 54(12): 120004. Zhu Yu, Shi Lei, Wei Jiahua, Xue Yang, Luo Junwen. Progress in Mobile Quantum Key Distribution Technique[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!