发光学报, 2020, 41 (8): 977, 网络出版: 2020-08-06   

高调谐效率V型腔可调谐半导体激光器设计与研究

Design and Research of High Tuning Efficiency V-cavity Tunable Semiconductor Laser
作者单位
1 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
2 长春理工大学 光电工程学院, 吉林 长春 130022
3 浙江大学 现代光学仪器国家重点实验室, 浙江 杭州 310027
摘要
V型腔可调谐半导体激光器由于具备结构简单紧凑、性能优良等特点, 在光通讯领域有着较大的应用潜力。然而, 由于激光器外延结构热导率相近, 用于波长调谐的热量大部分直接流失, 激光器无法得到较高的调谐效率。本文通过在调谐区域加入隔热结构, 设计了具有高调谐效率的V型腔可调谐激光器。利用由COMSOL Multiphysics建立的V型腔激光器温度模型, 分析了隔热结构的加入对激光器各部分的温度影响。通过Rsoft建立的谐振腔光场分布, 优化半波耦合器参数, 使激光器具有最佳的模式选择性。结果表明, 激光器主边模阈值增益差达到6.07 cm-1, 调谐效率从0.165 nm/mW提升至0.3 nm/mW。同时, 隔热结构的加入不会使激光器其他区域有明显的温升, 器件性能受到的负面影响可以忽略。
Abstract
V-cavity tunable semiconductor laser has great potential in optical network because of its advantages of simplicity, compactness and high performance. However, because the thermal conductivity of epitaxial structure is similar, most of the heat for wavelength tuning is lost directly, and so the tuning efficiency of laser is low. In this paper, a V-cavity laser with high tuning efficiency is designed by adding a heat insulation structure in the tuning region of the laser. Through the temperature model of V-cavity laser built by COMSOL Multiphysics, the effect of adding thermal insulation structure on the temperature of each part of the laser is analyzed. Through the optical field distribution established by Rsoft, the proper half wave coupler parameters are selected, so that the laser has the best mode selectivity.The results show that threshold gain difference between the lowest threshold mode and the next lowest threshold mode is 6.07 cm-1, and the tuning efficiency increases from 0.165 nm/mW to 0.3 nm/mW. Meanwhile, the addition of thermal insulation structure will not cause obvious temperature rise in other areas of the laser, and the negative impact on the device performance can be ignored.
参考文献

[1] 冯志庆,白兰,王宁,等. 基于双透镜外腔结构的窄线宽可调谐半导体激光器 [J]. 发光学报, 2012,33(10):1138-1142.

    FENG Z Q,BAI L,WANG N,et al.. Narrow-linewidth tunable semiconductor lasers based on dual-lens external-cavity structure [J]. Chin. J. Lumin., 2012,33(10):1138-1142. (in Chinese)

[2] 李保志,邹永刚,王小龙,等. 宽范围可调谐内腔液晶垂直腔面发射激光器设计与研究 [J]. 发光学报, 2018,39(11):1621-1626.

    LI B Z,ZOU Y G,WANG X L,et al.. Design and research of wide range tunable intracavity liquid crystal vertical cavity surface emitting laser [J]. Chin. J. Lumin., 2018,39(11):1621-1626. (in Chinese)

[3] COLDREN L A. Monolithic tunable diode lasers [J]. IEEE J. Selected Top. Quantum Electron., 2000,6(6):988-999.

[4] BUUS J,MURPHY E J. Tunable lasers in optical networks [J]. J. Lightw. Technol., 2006,24(1):5-11.

[5] BROX O,TAWFIEQ M,DELLA CASA P,et al.. Realisation of a widely tuneable sampled grating DBR laser emitting around 970 nm [J]. Electron. Lett., 2017,53(11):744-746.

[6] KUNDU I,DEAN P,VALAVANIS A,et al.. Continuous frequency tuning with near constant output power in coupled Y-branched terahertz quantum cascade lasers with photonic lattice [J]. ACS Photonics, 2018,5(7):2912-2920.

[7] WAN Y T,ZHANG S,NORMAN J C,et al.. Tunable quantum dot lasers grown directly on silicon [J]. Optica, 2019,6(11):1394-1400.

[8] LIN X F,LIU D K,HE J J. Design and analysis of 2×2 half-wave waveguide couplers [J]. Appl. Opt., 2009,48(25):F18-F23.

[9] MENG J J,XIONG X H,XING H B,et al.. Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules[J]. IEEE Photonics Technol. Lett., 2017,29(12):1035-1038.

[10] HE J J,LIU D K. Wavelength switchable semiconductor laser using half-wave V-coupled cavities [J]. Opt. Express, 2008,16(6):3896-3911.

[11] DENG H Y,MENG J J,WEI W X,et al.. Wavelength tunable V-cavity laser employing integrated thin-film heaters [J]. IEEE Photonics J., 2016,8(4):1502908.

[12] 胡志朋. 基于刻蚀槽的耦合腔半导体激光器研究 [D]. 杭州:浙江大学, 2017.

    HU Z P. Coupled Cavity Semiconductor Laser Based on Deep-etched Trenches [D]. Hangzhou:Zhejiang University, 2017. (in Chinese)

[13] HAN X M,CHENG Q,LIU F,et al.. Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser [J]. IEEE Photonics J., 2016,8(3):1501512.

[14] OGAWA S,IMADA M,NODA S. Analysis of thermal stress in wafer bonding of dissimilar materials for the introduction of an InP-based light emitter into a GaAs-based three-dimensional photonic crystal [J]. Appl. Phys. Lett., 2003,82(20):3406-3408.

[15] 邓浩瑜. 热调谐V型腔半导体激光器及其传感应用研究 [D]. 杭州:浙江大学, 2016.

    DENG H Y. Research on Thermally Tuned V-cavity Semiconductor Laser and Its Sensing Application [D]. Hangzhou:Zhejiang University, 2016. (in Chinese)

[16] SHEEN M T,HO Y H,WANG C L,et al.. The joint strength and microstructure of fluxless Au/Sn solders in InP-based laser diode packages [J]. J. Electron. Mater., 2005,34(10):1318-1323.

王傲, 邹永刚, 李明宇, 陈拓, 常锴, 王小龙, 宫景丽, 石琳琳, 范杰, 郑舟, 马骁, 何建军. 高调谐效率V型腔可调谐半导体激光器设计与研究[J]. 发光学报, 2020, 41(8): 977. WANG Ao, ZOU Yong-gang, LI Ming-yu, CHEN Tuo, CHANG Kai, WANG Xiao-long, GONG Jing-li, SHI Lin-lin, FAN Jie, ZHENG Zhou, MA Xiao, HE Jian-jun. Design and Research of High Tuning Efficiency V-cavity Tunable Semiconductor Laser[J]. Chinese Journal of Luminescence, 2020, 41(8): 977.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!