红外与激光工程, 2020, 49 (9): 20201036, 网络出版: 2021-01-04   

融合计算全息术与纳米印刷术的多功能超表面研究进展 下载: 810次

Advances in the research of multifunctional metasurfaces merging computer-generated holography and nanoprinting
作者单位
武汉大学 电子信息学院,湖北 武汉 430072
摘要
计算全息术与纳米印刷术是超表面材料的两种典型应用。近年来,融合全息术与纳米印刷术的多功能超表面成为新兴研究热点,有望在多重光学防伪、信息编码与复用、多通道图像显示、VR/AR等领域得到重要应用。文中在介绍超表面纳米印刷术和计算全息术特点的基础上,将实现两者融合的研究进展进行了详细的归类和特点分析,具体包括:正交偏振复用法、平面合成法、空间堆叠法、光谱+相位调控法、复振幅法、转角简并性法等。最后,对多功能超表面的研究前景进行了展望。
Abstract
Computer-generated holography and nanoprinting are two typical applications of optical metasurfaces. Recently, merging holography and nanoprinting into a multifunctional metasurface becomes an emerging research hotspot, which has prospective applications in multi-folded anti-counterfeiting, information decoding and multiplexing, multi-channel image display and VR/AR, etc. In this paper, based on the features of metasurface-based nanoprinting and computer-generated holography, the advances in the research of merging them were classified and characterized in detail. Specifically, the merging methods were discussed in detail which included orthogonal-polarization multiplexing scheme, in-plane arrangement scheme, multilayer-stacking scheme, simultaneous spectrum and phase control scheme, complex amplitude modulation scheme, orientation degeneracy scheme. The future development of multifunctional metasurfaces was prospected.

0 引 言

光学超表面是在普通光学材料(包括金属和电介质)的表面刻画出的周期性亚波长结构阵列。由于亚波长结构可以根据调控参量进行任意设计,因此超表面可等效为能对电磁场进行逐点调控的功能材料,实现对入射光波的振幅、相位、偏振、波长、光谱等参量进行亚波长分辨率的精密调控。制造方面,与三维超材料相比,由于少了深度方向上的亚波长周期特征,超表面的加工难度大大降低,并且与现有的半导体加工工艺兼容,极具商业应用前景。基于此,科学家围绕超表面对光波波长选择、偏振转换、相位及振幅调控等问题开展了详细的讨论,对局域在材料表面的电磁模式及其传输问题做了大量的理论分析和实验研究[1-25],实现了透反射光操控[8]、超大数值孔径超透镜[9]、消色差超透镜[10-14]、高集成角反射器[15]、高分辨率内窥镜[16]、高灵敏度光谱测量仪[17-18]、高精度位移测量装置[19]等一系列标志性创新研究成果。这些工作极大地丰富了超表面的研究内涵,使得超表面研究呈现出一片繁荣的景象。

超表面对入射光波偏振、振幅、相位具有的特殊调控能力,同时也为高密度图像的存储和显示提供了一条新的途径,能用于产生高分辨率、高保真度和高效率的纳米印刷图像。与使用染料或油墨的传统印刷不同,当超表面纳米结构尺寸、排布方式等发生变化时,其对透射或反射光波具有波长选择作用,使超表面近场呈现不同的颜色分布[26-28],如图1(a)所示。结合单个纳米结构的共振及纳米结构之间的互耦合,可以任意选择高透或高反的波长,同时使光谱响应峰值更加锐利,即展示的颜色明亮鲜艳。这种具有高信息密度的纳米印刷显示技术相对于传统图像显示具有分辨率高、颜色丰富、色域广等优点。且通过巧妙设计,可以使近场图像仅在具有特定波长、特定偏振态的光波以特定角度入射时得到显示,即对图像进行了加密,大大提高了图像信息安全[29]。同时,通过对超表面纳米结构的各向异性进行灵活设计,可以实现偏振复用型纳米印刷[30]。例如,改变纳米柱结构的长和宽,可以使一对正交线偏振光入射时的光谱响应发生变化,从而产生两幅不同的彩色图像,如图1(b)所示。

图 1. 典型超表面纳米印刷方案[26, 30-32]。(a)改变纳米结构尺寸及间隔;(b)基于正交偏振态的图像复用;(c)基于马吕斯定律的图像显示;(d)基于纳米结构的转角简并性的图像复用

Fig. 1. Typical shemes of metasurface nanoprintings[26, 30-32]. (a) Varying the size and spacing of nanostructures; (b) Multiplexing image display based on orthogonal-polarization states; (c) Image display based on Malus’s law; (d) Multiplexing image display based on orientation degeneracy of nanostructures

下载图片 查看所有图片

除了改变纳米结构的尺寸外,通过排布纳米结构的转角可以实现基于马吕斯定律的纳米印刷。改变微纳半波片、微纳起偏器、甚至任何各向异性微纳结构的转角,配合偏振片,均能够显示出高分辨率的灰度图像[31-34],如图1(c)所示。将马吕斯定律与光谱响应结合起来,即对红、绿、蓝光分别优化得到具有窄带响应的各向异性单元结构,将这些不同尺寸的纳米结构组成超晶胞,并分别针对一幅图像的不同颜色分量设计纳米结构转角分布,可以实现具有任意色度、饱和度和亮度的全彩色纳米印刷图像[35]。进一步研究发现,马吕斯定律中蕴含的转角简并性为纳米印刷提供了一种崭新的设计自由度。基于该自由度,研究者们能够利用单一尺寸纳米结构设计出多通道超表面,在不增加制造难度的情况下进一步提高超表面器件的信息存储密度[32],如图1(d)所示。

超表面对光波的精密调控能力同样能用于生成高质量的计算全息图像。其中,基于几何相位的超表面全息由于具有鲁棒性强、设计灵活的特性而受到广泛关注[36-54]。几何相位调控量仅与超表面单元结构的旋转角有关,与单元结构尺寸及光波频率无关,且这种纯相位型全息片在制造上仅需要简单的两台阶微纳光学工艺条件,极具应用前景。利用金属−电介质隔离层−金属(Metal-Insulator-Metal, MIM)或者二氧化钛(TiO2)纳米砖结构设计的高保真度、高效率、宽带超表面全息已被报导[41-42],如图2所示。超表面衍射再现的全息图像与入射光波偏振态、波前相位分布、衍射距离相关,这为全息复用提供了新的思路,由此发展出偏振复用型全息[43]、彩色全息[44-47]、多层菲涅尔全息[48-49]、三维全息[50]等一系列新成果。若继续增加超表面纳米结构的设计自由度,将两个相同的纳米结构组成一个单元[51-54],能够同时改变入射光波的振幅、相位和偏振态,得到功能更丰富的超表面器件,实现复杂矢量光场的产生。

图 2. 高效几何相位超表面全息[41-42]。(a)基于MIM结构;(b)基于TiO2纳米砖结构

Fig. 2. High efficiency holography enabled with geometric metasurfaces[41-42]. (a) Based on MIM structures; (b) Based on TiO2 nanobricks

下载图片 查看所有图片

上述讨论仅限于单一功能的超表面:即要么纳米印刷、要么全息。通过多种调控方式实现多功能集成,是超表面相比于传统光学元件所具有的显著优势。然而由于工作原理不同,纳米印刷和全息的设计思路是不一样的,大多数情况下,一片超表面只能用于设计纳米印刷或全息。近年来,在实现多重信息复用及信息加密方面,将纳米印刷术和全息术应用于同一片超表面上已经成为一种新兴而巧妙的方案[55-69]。实现该方案的关键是对入射光的相位和振幅进行独立调控。例如,调控超表面中纳米结构的各向异性,当一对正交线偏振光入射时,能分别产生一幅纳米印刷图像和1幅全息图像[55];将两种分别实现振幅和相位调控的纳米结构在平面上合成或空间上堆叠,可同时实现纳米印刷与全息[56-61];将具有不同光谱响应的纳米结构按一定规律排列可以形成纳米印刷图像,结合这些纳米结构的相位调控能力能在远场再现全息图像[62-65];通过改变纳米结构的尺寸形成一系列波片、或者利用一对纳米结构的耦合作用均能实现复振幅调控,这种超表面能在显示纳米印刷图像的基础上增加设计复振幅型全息[66, 67];马吕斯定律蕴含的转角简并性,能在不影响纳米印刷图像光强调控的情况下赋予实现多台阶几何相位全息的设计自由度[68-69]

从物理机理层面上讲,这些方案不同于多通道振幅复用或多通道相位复用,而是要综合考虑振幅调控和相位调控。利用超表面实现对光波的多个参量进行独立调控,扩展了光波调控维度。且纳米印刷通常是调控元件表面上的光场,而全息多用于对远场空间的光波进行调控。将全息术与纳米印刷术融合至一片超表面,证明了光场调控的灵活性,为实现光场全空间全要素调控奠定了理论基础。从应用前景层面上讲,超表面微纳结构的周期特征尺寸降低至亚波长量级,基于超表面的纳米印刷术具有传统印刷术难以比拟的超高分辨率,而超表面全息同样能实现一种芯片级的信息光学器件。利用超表面的多维度电磁响应特性,实现全息术与纳米印刷术的融合,将极大地缩小系统体积、减轻系统重量、降低系统功耗,代表着未来光学显示技术的发展方向,有望在体感设备、智能手机等人机交互领域及防伪、信息加密等信息安全领域发挥关键作用。

1 融合计算全息术与纳米印刷术的多功能超表面实现方案

1.1 正交偏振复用法

通过对各向异性纳米结构尺寸进行优化,可以对偏振态互相垂直的两束光进行独立调控,超表面的这种设计自由度被广泛应用于偏振复用型全息及纳米印刷中[30, 70]。将两幅与人左右眼视图对应的图像编码至同一片超表面中,结合偏振复用原理,可以实现三维显示。Juan Deng等人利用硅材料从理论上[70]、Augusto Martins等人从实验上[71]证明了偏振控制的三维全息的可行性,而Xiao Ming Goh等人实现了三维彩色纳米印刷[30]

2019年,Yinan Zhang等人利用正交偏振复用原理实现了纳米印刷术和全息术的融合[55]。其设计的超表面单元结构、工作原理及实验效果如图3所示。当采用飞秒激光器照射十字形铝纳米结构时,由于热效应,铝纳米结构形状会受到激光光强和偏振影响,水平方向和垂直方向的臂长可以被独立调控。改变水平臂长可以改变该偏振方向下入射光的反射率峰值波长,而对于波长为632 nm的入射光,改变垂直臂长可以改变该偏振方向下的光波相位。因此,在对超表面每个位置处十字形铝纳米结构的两个臂长优化设计后,当采用水平方向偏振的宽带光源入射至该超表面时,可以形成一幅彩色纳米印刷图像;当采用垂直方向偏振的波长为632 nm的相干光入射至同一片超表面时,能够衍射再现出一幅全息图像。

图 3. 基于十字形纳米结构的正交偏振复用法[55]。(a)加工原理;(b)单元结构;(c)设计原理;(d)双通道超表面示意图

Fig. 3. Orthogonal-polarization multiplexing scheme based on cross-shaped nanostructures[55]. (a) Fabrication principle; (b) Schematic of a unit cell; (c) Illustration of the design process; (d) Schematic view of the dual-function metasurface

下载图片 查看所有图片

1.2 平面合成法

由于超表面中不同位置处的纳米单元结构对光波的调控特性可以独立设计,其很容易用不同区域纳米单元实现不同的功能。这种将多种纳米单元结构分区域排布或交替排布已经得到很多应用,如多焦点超透镜[72]、多焦面涡旋光发生器[73]、变维数傅里叶变换器[74]、双离轴透镜[75]、手性复用型全息[76-77]、彩色全息[78]、彩色纳米印刷[34]等。基于此原理,Chunmei Zhang等人设计了一种用于防伪的多通道超表面[56]。其将实现几何相位全息的纳米结构与实现灰度纳米印刷的纳米结构在同一平面上进行合成,如图4(a)所示。当用圆偏振光入射时,远场能够产生全息图像(二维码及瓦特大学图标)。当用线偏振光入射时,出射光的偏振方向受到调控,借助于检偏器解码并用物镜进行放大后,可以观察到灰度纳米印刷图像。

图 4. 平面合成法[56-57]。(a)交替排布超表面;(b)分区域排布超表面

Fig. 4. In-plane arrangement scheme[56-57]. (a) Interleaved metasurfaces; (b) Segmented metasurfaces

下载图片 查看所有图片

对于电介质纳米结构而言,一般情况下反射率很低,所以由其构成的超表面工作于透射模式。在纳米结构设计时引入共振,能够大大增加纳米结构的反射率。Rui Chen等人针对1550 nm波长设计了三种类型的纳米结构:第一种,不发生共振,改变纳米结构大小可以调控透射光波相位;第二种,仅当入射光波偏振方向沿纳米结构长轴时发生共振,反射率接近1,而偏振方向沿纳米结构短轴的入射光反射率仅为0.3;第三种,无论入射光偏振方向如何,纳米结构都发生共振,光波几乎都被反射。将这三种纳米结构分区域排列,可以在反射空间产生偏振复用型二值纳米印刷图像,而在透射空间具有聚焦功能[57],如图4(b)所示。利用这种方案也能实现全息术与纳米印刷术的融合。

除了通过改变纳米结构大小改变反射率实现纳米印刷外,根据多光束干涉原理,调控法布里—珀罗谐振腔(F-P腔)的腔长,可以使光谱反射率峰值波长发生移动。即采用宽带光源入射时,不同腔长的F-P腔能显示不同的颜色,从而实现彩色纳米印刷[27]。Jianxiong Li等人巧妙利用这种超表面中单元结构高度的不同,并结合可重构的化学方法[79],实现了全息及纳米印刷的动态切换[58]。具体而言,通过氢化或脱氢作用,构成F-P腔上层的材料可以由金属变为金属氢化物,或发生相反的变化,如图5(a)所示。当F-P腔的上层为金属材料时,入射光几乎全部发生反射,由于单元结构高度的差异,反射光附加的相位差会发生变化,从而实现多台阶相位型全息。当F-P腔的上层为金属氢化物时,部分光波会进入F-P腔中发生多光束干涉,形成彩色纳米印刷,如图5(b)所示。该工作为未来实现紧凑型多功能动态显示光学元件提供了一种设计范例。

图 5. 基于平面合成法的可重构多功能超表面[58]。(a)超表面示意图;(b)设计原理

Fig. 5. Reconfigurable multifunctional metasurfaces based on in-plane arrangement scheme[58]. (a) Schematic illustration of the metasurface; (b) Design principle

下载图片 查看所有图片

1.3 空间堆叠法

将分别具有光谱和相位调控功能的两层单元结构堆叠放置,可以同时实现彩色纳米印刷与彩色全息。因此,在F-P腔单元结构上设计制造出具有相位调控功能的纳米结构,即可在不影响纳米印刷效果的情况下增加额外的设计自由度,最终实现全息术与纳米印刷术的融合。基于这种思路,Yueqiang Hu等人设计了一种对入射光偏振不敏感的三维集成式超表面[59]。该超表面由透射峰值波长分别为450 nm (蓝光)、532 nm (绿光)、633 nm (红光)的三种F-P腔和具有16相位台阶的变尺寸纳米孔(对于高深宽比结构,纳米孔比纳米柱机械稳定性更高)堆叠而成,如图6(a)所示。因此,该超表面能够产生一幅全彩色全息图像与一幅三色纳米印刷图像,两幅图像之间串扰很小。Kevin T.P. Lim等人将具有不同结构色的单元与不同厚度的相位片堆叠,同样能在白光入射时产生彩色纳米印刷图像,在不同波长的激光入射时产生不同颜色的全息图像[60]

图 6. 空间堆叠法:F-P腔与调控(a)传输相位或(b)几何相位的单元结构堆叠[59, 61]

Fig. 6. Multilayer-stacking scheme: F-P cavity stacked with nanostructures that manipulate (a) propagation phase or (b) geometric phase[59, 61]

下载图片 查看所有图片

相较于变尺寸纳米结构,变转角纳米结构对光波的几何相位调控量与入射光波偏振态相关,为光波波前的调控提供了一种新的自由度。这种自由度已得到许多应用,如变焦透镜[80-82]、偏振分光光栅[83]、单像素鬼成像[84]等。Xuhao Luo等人将几何相位超表面与F-P腔结合,充分利用了F-P腔的滤色特性与几何相位的偏振复用特性,实现了三波长双旋向复用型集成式超表面,其理论上有六种独立的入射方式,将这些方式组合,可以编码26-1种全息图像[61]。此外,该超表面还能产生一个额外的二维码纳米印刷图像,可以进一步增加所要传递信息的安全性,如图6(b)所示。

1.4 光谱+相位调控法

在通过改变纳米结构的大小调控透反射光谱的同时,若还能通过改变纳米结构的排布规律使超表面具有相位调控能力,则可以仅用单层纳米结构实现纳米印刷术与全息术的融合。Dandan Wen等人利用米氏共振原理,改变TiO2圆台形纳米结构的尺寸,调控共振峰值波长,最终在红、绿、蓝对应的波长处分别得到了窄带分离的反射峰。将具有不同反射光谱特性的纳米结构分区域排列,可以得到三色纳米印刷图像,如图7(a)所示。进一步的,其应用迂回相位编码方案,在不改变纳米结构反射光谱特性的情况下实现了相位调控,得到了彩色全息图像[62]

图 7. 光谱+相位调控法:基于电介质纳米结构的光谱调控与(a)迂回相位编码或(b,c)几何相位调控结合[62-64]

Fig. 7. Spectrum and phase control scheme: combining spectrum manipulation based on dielectric nanostructures with (a) detour phase encoding or (b, c) geometric phase manipulation [62-64]

下载图片 查看所有图片

对于各向异性纳米结构,改变其转角不会使其光谱响应发生变化,但是会引入不同的几何相位调控量。基于此原理,在优化出具有不同光谱响应的纳米结构后,按照近场纳米印刷图像颜色分布确定各位置处纳米结构尺寸,再根据全息所需要的相位调控量设置纳米结构的转角,即可同时实现纳米印刷与全息。Gwanho Yoon等人设计了两种结构的纳米单元,当用白光入射时,由于两种单元光谱响应的不同而分别显示红色和绿色,如图7(b)所示。通过巧妙设计,这两种纳米结构针对635 nm波长具有相同的几何相位调控特性,当采用该波长激光照射时,得到了单色全息图像[63]。Qunshuo Wei等人同样设计了两种具有不同光谱响应的纳米单元结构,不同的是,这两种纳米单元结构的交叉偏振转化效率具有窄带特性,如图7(c)所示,即每一种纳米结构只对特定颜色入射光波具有几何相位调控作用。因此,当白光入射时,样品表面能形成双色纳米印刷图像;当采用波长为540 nm和645 nm的激光同时照射时,在远场能形成双色全息图像[64]

为了得到颜色更丰富、更鲜艳的纳米印刷图像,Fei Zhang等人利用光栅结构分别针对红绿蓝光设计了三种具有窄带响应的超表面单元[65],如图8(a)所示。利用混色原理对三种单元进行排布(见图8(b)),该超表面能够实现具有不同RGB值的全彩色纳米印刷图像(见图8(c)),同时还能产生几何相位型彩色全息图像(见图8(d))。更重要的是,由于制造简单,这种超表面适合于大面积批量生产,且成本低廉,在防伪、信息安全、高密度光存储等方面具有广泛的应用前景。

图 8. 窄带光谱响应光栅+几何相位[65]。(a)光栅结构及对应光谱响应;(b)混色排布;(c)彩色纳米印刷图;(d)彩色全息图

Fig. 8. Narrow-band spectral response grating + geometric phase[65]. (a) Structure of the grating and the corresponding spectral response; (b) Arranging the unit cells by using the color mixing principle; (c) Color nanoprinting image; (d) Color holographic images

下载图片 查看所有图片

1.5 复振幅法

复振幅既包含振幅信息又包含相位信息,利用振幅信息可以实现纳米印刷,利用相位信息可以产生全息图像。传统光学元件很难实现光波复振幅调控,而超表面对光波的强大调控能力使复振幅调控成为可能。根据几何相位原理,各向异性程度不同的材料交叉偏振转化效率不同,即出射光波能受到振幅调控。通过灵活设计,改变超表面中纳米结构尺寸可以很容易地调控光波振幅,同时,通过改变纳米结构转角,可以实现光波相位的连续调控,如图9(a)所示,该原理已被应用于选择性地产生衍射级次[85]。Adam C. Overvig等人通过改变纳米砖结构的宽度,设计了一组振幅调控量不同的波片,借助于复振幅调控原理,可以在样品表面产生一幅灰度图像的同时在远场产生一幅全息图像[66],如图9(b)所示。

图 9. 复振幅调控法[66-67, 85]。(a)复振幅调控原理;(b)基于波片的单波长复振幅调控;(c)基于一对纳米结构与窄带光谱响应结合的三波长复振幅调控

Fig. 9. Complex amplitude modulation scheme[66-67, 85]. (a) Manipulation principle of complex amplitude; (b) Complex amplitude modulation at a single wavelength based on wave plates; (c) Complex amplitude modulation at three wavelengths enabled with combining twin nanostructures and narrow-band spectral responses

下载图片 查看所有图片

实现复振幅调控的另一种方法是采用由两个相同的纳米砖组成的单元结构构造超表面。这种单元结构能提供更多的设计自由度以实现复杂的光波调控,近年来受到了研究者们越来越多的关注[51-54]。Yanjun Bao等人将一对纳米结构的复振幅调控能力与窄带光谱响应特性结合起来,针对红绿蓝光分别设计了三种单元结构,无论是振幅还是相位都能受到连续精密调控[67]。该超表面能在近场产生彩色印刷图像,在远场产生彩色全息图像,如图9(c)所示。两幅彩色图像均可以实现任意的色度、饱和度和亮度控制。

1.6 转角简并性法

简并性是一个被广泛应用在物理、生物、医学以及数学领域的概念。如在量子力学领域,一个能级与一种以上的状态相对应,则称之为简并能级。分子生物学中,同一种氨基酸具有两个或更多个密码子的现象称为密码子的简并性。这种用来描述同一个映射结果下的多种状态,称之为简并性。马吕斯定律中蕴含的转角简并性是指用纳米结构作为强度调制器去调控出射光强的时候,其出射光强与纳米砖转角θ之间存在的一对多映射关系。

马吕斯定律中蕴含的转角简并性为超表面设计提供了一种崭新的自由度。在利用马吕斯定律进行纳米印刷片设计时,不同转角的纳米结构可以产生相同的光强调控,该方案已被应用到复用型超表面纳米印刷设计中[35]。而几何相位仅与纳米结构的转角有关,即圆偏光入射后的相位延迟正好是转角的两倍。将纳米结构的转角简并性与几何相位相结合,能在不影响纳米印刷图像光强调控的情况下、赋予实现多台阶几何相位全息的设计自由度。

基于此原理,Liangui Deng等人仅利用由一种尺寸的纳米结构构成的超表面,在产生连续灰度纳米印刷图像的同时,实现了四台阶相位型全息[68],如图10所示。转角为θ的纳米结构插入至透光轴方向互相垂直的起偏器和检偏器之间,透射光强正比于cos22θ,可以看到,同一个强度值,将会有四种不同的纳米结构转角供自由选择,从而产生不同的几何相位调控量。该方案中纳米印刷图像与全息图像彼此独立,不存在串扰。相较于变尺寸纳米结构或叠层纳米结构等其他多功能超表面实现方案,马吕斯定律转角简并性将纳米结构中蕴含的设计自由度进行了更为充分的利用,为超表面信息复用提供了一种简单、高效、高信息密度、无串扰的技术方案,在高密度光存储、信息隐藏等领域具有广阔的应用前景。

图 10. 转角简并性法[68]。(a)转角简并性原理示意图;(b)全息图像与纳米印刷图像独立显示;(c)实验结果

Fig. 10. Orientation degeneracy scheme[68]. (a) Schematic illustration of the orientation degeneracy; (b) Independent displays of holographic image and nanoprinting image; (c) Experimental results

下载图片 查看所有图片

更进一步的,Zile Li等人将马吕斯定律中蕴含的转角简并性与几何相位、传输相位原理结合,设计了一种基于单胞元结构的三通道超表面图像显示技术[69]。在该方案中,每一个纳米结构都包含了三种信息,能够在不降低各通道信息容量的基础上增加通道数,且各通道信息相互独立,互不干扰。值得一提的是,这三种信息解码方式不同:纳米印刷图像的解码需要将超表面放置于起偏器起偏方向和检偏器检偏方向垂直的光路中,并通过显微系统放大;而当旋向不同的圆偏振光入射至超表面时,可以在光屏上直接观察得到两幅不同的全息图像,如图11所示。因此,该方案可以实现多重防伪功能,可显著提高所存储信息的安全性。

图 11. 基于单胞元结构的三通道超表面图像显示[69]

Fig. 11. Three-channel metasurface for meta-image displays based on single-celled nanostructures[69]

下载图片 查看所有图片

2 展 望

融合全息术与纳米印刷术的多功能超表面已得到诸多研究,实现这种多功能超表面的关键是提高超表面单元结构的设计自由度、以及实现多参量的独立调控或者单参量的复用调控。采用相变材料、可重构的化学方法、可拉伸的柔性基底等方案有望进一步增加单元结构设计自由度,并实现多种功能间的切换。另外,除了应用于图像显示,多功能超表面还具有一些其他的独特应用。例如,将相位梯度探测、偏振探测功能融入至同一片超表面,可以用来对矢量光束和涡旋光束进行实时测量[86];将纳米结构的光谱响应特性与成像功能相结合,可以实现高光谱探测[18]。总之,这类体积小、重量轻、功耗低、易集成的多功能超表面能对光波进行更为灵活的调控,将继续作为研究热点,在防伪、显示、存储、加密、测量等诸多领域具有重要的科学价值和应用前景。

参考文献

[1] Wei Q, Huang L, Zentgraf T. Optical wavefront shaping based on functional metasurfaces[J]. Nanophotonics, 2020, 9: 987-1002.

[2] Chen S, Liu W, Li Z. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32: 1805912.

[3] Li Z, Yu S, Zheng G. Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more[J]. Nanophotonics, 2020, 9: 3699-3731.

[4] Hu Y, Wang X, Luo X. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9: 3755-3780.

[5] Jiang Q, Jin G, Cao L. When metasurface meets hologram: principle and advances[J]. Advances in Optics and Photonics, 2019, 11: 518-576.

[6] Xiong B, Deng L, Peng R. Controlling the degrees of freedom in metasurface designs for multi-functional optical devices[J]. Nanoscale Advances, 2019, 1: 3786-3806.

[7] Intaravanne Y, Chen X. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles[J]. Nanophotonics, 2020, 9: 1003-1014.

[8] Yu N, Genevet P, Kats M A. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[9] Khorasaninejad M, Chen W T, Devlin R C. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352: 1190-1194.

[10] Shrestha S, Overvig A C, Lu M. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7: 85.

[11] Wang S, Wu P C, Su V C. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 187.

[12] Wang S, Wu P C, Su V C. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13: 227-232.

[13] Lin R J, Su V C, Wang S. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14: 227-231.

[14] Chen W T, Zhu A Y, Sanjeev V. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13: 220-226.

[15] Arbabi A, Arbabi E, Horie Y. Planar metasurface retroreflector[J]. Nature Photonics, 2017, 11: 415-420.

[16] Pahlevaninezhad H, Khorasaninejad M, Huang Y W. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 2018, 12: 540-547.

[17] Andreas T, Aleksandrs L, Mingkai L. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360: 1105-1109.

[18] Yesilkoy M, Arvelo E R, Jahani Y. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13: 390-396.

[19] Yuan G H, Zheludev N I. Detecting nanometric displacements with optical ruler metrology[J]. Science, 2019, 364: 771-775.

[20] Zheng G, Liu G, Kenney M G. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Optics Express, 2016, 24: 6749.

[21] Shan X, Li Z, Deng L. Continuous amplitude-modulated meta-fork gratings with zero-order extinction[J]. Optics Letters, 2020, 45: 1902.

[22] Dai Q, Li Z, Deng L, et al. Singlesize nanostructured metasurface f dualchannel vtex beam generation[J]. Optics Letters, 2020, 45: 3773.

[23] Fu R, Li Z, Zheng G. Reconfigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 2019, 27: 12221.

[24] Fu R, Deng L, Guan Z, et al. Zeroderfree metaholograms in a broadb visible range[J]. Photonics Res, 2020, 8: 723.

[25] Song Q, Baroni A, Sawant R. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 2020, 11: 2651.

[26] Tan S J, Zhang L, Zhu D. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14: 4023-4029.

[27] Wang Y, Zheng M, Ruan Q. Stepwise-nanocavity-assisted transmissive color filter array microprints[J]. Research, 2018, 2018: 8109054.

[28] Yang W, Xiao S, Song Q. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11: 1864.

[29] Bao Y, Yu Y, Xu H. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 2018, 28: 1805306.

[30] Goh X M, Zheng Y, Tan S J. Three-dimensional plasmonic stereoscopic prints in full colour[J]. Nature Communications, 2014, 5: 5361.

[31] Dai Q, Deng L, Deng J. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Optics Express, 2019, 27: 27927-27935.

[32] Deng J, Deng L, Guan Z. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters, 2020, 20: 1830-1838.

[33] Yue F, Zhang C, Zang X F. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications, 2018, 7: 17129.

[34] Zhang Y, Cheng Y, Chen M. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface[J]. Applied Physics Letters, 2020, 117: 021105.

[35] Zang X, Dong F, Yue F. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30: 1707499.

[36] Li Z, Zheng G, He P. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 2015, 40: 4285.

[37] Chen K, Deng J, Zhou N. 2π-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light[J]. Optics Express, 2020, 28: 12331.

[38] Li Z, Kim I, Zhang L. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11: 9382-9389.

[39] Li Z, Dai Q, Mehmood M Q. Full-space cloud of random points with a scrambling metasurface[J]. Light: Science & Applications, 2018, 7: 63.

[40] Deng J, Yang Y, Tao J. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13: 9237-9246.

[41] Zheng G, Mühlenbernd H, Kenney M. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10: 308-312.

[42] Devlin R C, Khorasaninejad M, Chen W T. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of The National Academy of Sciences of The United States of America, 2016, 113: 10473-10478.

[43] Zhao R, Sain B, Wei Q. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 2018, 7: 95.

[44] Li X, Chen L, Li Y. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2: e1601102.

[45] Wan W, Gao J, Yang X. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10: 10671-10680.

[46] Zhang X, Pu M, Guo Y. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Advanced Functional Materials, 2019, 29: 1809145.

[47] Hu Y, Li L, Wang Y. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2020, 20: 994-1002.

[48] Huang K, Dong Z, Mei S. Silicon multi-meta-holograms for the broadband visible light[J]. Laser & Photonics Reviews, 2016, 10: 500-509.

[49] Wei Q, Huang L, Li X. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5: 1700434.

[50] Huang L, Chen X, Mühlenbernd H. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

[51] Deng Z L, Deng J, Zhuang X. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18: 2885-2892.

[52] Deng Z L, Deng J, Zhuang X. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light: Science & Applications, 2018, 7: 78.

[53] Deng Z L, Jin M, Ye X. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30: 1910610.

[54] Bao Y, Ni J, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 2020, 32: 1905659.

[55] Zhang Y, Shi L, Hu D. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4: 601-609.

[56] Zhang C, Dong F, Intaravanne Y. Multichannel metasurfaces for anticounterfeiting[J]. Physical Review Applied, 2019, 12: 034028.

[57] Chen R, Zhou Y, Chen W. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display[J]. ACS Photonics, 2020, 7: 1171-1177.

[58] Li J, Chen Y, Hu Y. et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892-7898.

[59] Hu Y, Luo X, Chen Y. 3D-integrated metasurfaces for full-colour holography[J]. Light: Science & Applications, 2019, 8: 86.

[60] Lim K T P, Liu H, Liu Y. et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 2019, 10: 25.

[61] Luo X, Hu Y, Li X. Integrated Metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption[J]. Advanced Optical Materials, 2020, 8: 1902020.

[62] Wen D, Cadusch J J, Meng J. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Advanced Functional Materials, 2020, 30: 1906415.

[63] Yoon G, Lee D, Nam K T. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses[J]. ACS Nano, 2018, 12: 6421-6428.

[64] Wei Q, Sain B, Wang Y. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19: 8964?8971.

[65] Zhang F, Pu M, Gao P. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 2020, 7: 1903156.

[66] Overvig A C, Shrestha S, Malek S C. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light: Science & Applications, 2019, 8: 92.

[67] Bao Y, Yu Y, Xu H. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation bright-ness control[J]. Light: Science & Applications, 2019, 8: 95.

[68] Deng L, Deng J, Guan Z. Malus-metasurface-assisted polarization multiplexing[J]. Light: Science & Applications, 2020, 9: 101.

[69] Li Z, Chen C, Guan Z. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser & Photonics Reviews, 2020, 14: 2000032.

[70] Deng J, Li Z, Zheng G. Depth perception based 3D holograms enabled with polarization-independent metasurfaces[J]. Optics Express, 2018, 26: 11843-11849.

[71] Martins A, Li J, Mota A F D. Broadband c-Si metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography[J]. Optics Express, 2018, 26: 30740-30752.

[72] Chen X, Chen M, Mehmood M Q. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 2015, 3: 1201-1206.

[73] Mehmood M Q, Mei S, Hussain S. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28: 2533-2539.

[74] Wen D, Yue F, Ardron M. Multifunctional metasurface lens for imaging and Fourier transform[J]. Scientific Reports, 2016, 6: 27628.

[75] Khorasaninejad M, Chen W T, Zhu A Y. Visible wavelength planar metalenses based on titanium dioxide[J]. IEEE Journal of Quantum Electronics, 2017, 23: 43-58.

[76] Wen D, Yue F, Li G. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

[77] Huang K, Deng J, Leong H S. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting[J]. Laser & Photonics Reviews, 2019, 13: 1800289.

[78] Wang B, Dong F, Li Q T. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16: 5235-5240.

[79] Li J, Kamin S, Zheng G. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4: eaar6768.

[80] Chen X, Huang L, Mühlenbernd H. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

[81] Zheng G, Wu W, Li Z. Dual field-of-view step-zoom metalens[J]. Optics Letters, 2017, 42: 1261-1264.

[82] Cui Y, Zheng G, Chen M. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 2019, 17: 111603.

[83] Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter[J]. Nature Communications, 2014, 5: 5386.

[84] Liu H C, Yang B, Guo Q. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Science Advances, 2017, 3: e1701477.

[85] Song X, Huang L, Tang C. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6: 1701181.

[86] Yang Z, Wang Z, Wang Y. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 2018, 9: 4607.

李子乐, 周舟, 梁聪玲, 郑国兴. 融合计算全息术与纳米印刷术的多功能超表面研究进展[J]. 红外与激光工程, 2020, 49(9): 20201036. Zile Li, Zhou Zhou, Congling Liang, Guoxing Zheng. Advances in the research of multifunctional metasurfaces merging computer-generated holography and nanoprinting[J]. Infrared and Laser Engineering, 2020, 49(9): 20201036.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!