Photonic Sensors, 2014, 4 (4): 289–294, Published Online: Dec. 8, 2014   

Performance Evaluation of a Bilayer SPR-Based Fiber Optic RI Sensor With TiO2 Using FDTD Solutions

Author Affiliations
1 Research Centre of Excellence for Wireless and Photonics Networks (WiPNET), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2 Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract
We proposed a new bilayer surface plasmon resonance-based fiber-optic refractive index sensor with silver and an over-layer of TiO2. We numerically investigated the optimal thickness of TiO2 over-layer in the proposed sensor and compared its performance to that based on typical bimetallic layers of silver-and-gold in the aqueous media using finite-difference time domain approach. We show that the use of TiO2 over-layer greatly improves the sensor performance in terms of sensitivity and signal-to-noise ratio compared to that with gold as the over-layer. Not only does the TiO2 over-layer offer a cost-effective alternative to gold for overcoming the oxidation problem, but also it allows resonance wavelength-tunability.
References

[1] B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensors and Actuators B: Chemical, 2005, 107(1): 40–46.

[2] W. H. Weber and S. L. Mccarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Physical Review B, 1975, 12(12): 5643–5650.

[3] M. G. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sensors and Actuators B: Chemical, 2013, 179: 175–186.

[4] S. Li, H. Ye, C. Liu, Y. Don, and Y. Huang, “Low-cost, high performance surface plasmon resonancecompatible film characterized by the surface plasmon resonance technique,” Chinese Physics B, 2013, 22(7): 448–453.

[5] S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance,” Sensors, 2002, 2(2), 62–70.

[6] D. Cipriana and P. Hlubinaa, “Simulation of surface plasmon fiber-optic sensor including the effect of oxide overlayer thickness change,” in Proc. SPIE, 2012, 8439(1): 843927-1–843927-11.

[7] D. F. Santos, A. Guerreiro, and J. M. Baptista, “Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMSOL multiphysics,” Photonic Sensors, 2013, 3(1): 61–66.

[8] N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, 2010, 146(1): 195–198.

[9] M. G. Manera, P. D. Cozzoli, G. Leo, M. L. Curri, A. Agostiano, L. Vasanelli, et al., “Thin films of TiO2 nanocrystals with controlled shape and surface coating for surface plasmon resonance alcohol vapour sensing,” Sensors and Actuators B: Chemical, 2007, 126(2): 562–572.

[10] S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasma resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sensors and Actuators A: Physical, 2013, 193: 136–140.

[11] M. D. Thoreson, Z. Liu, U. K. Chettiar, P. Nyga, A. V. Kildishev, V. P. Drachev, et al., “Studies on Metal-Dielectric Plasmonic Structures,” Sandia Report SAND2009-7034, Sandia National Laboratories, United States, 2010, 41(20): 1–68.

[12] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370–4379.

[13] S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Measurement Science and Technology, 2010, 21(11): 1–8.

[14] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Norwood: Artech House, 2005.

[15] Y. Al-Qazwini, A. S. M. Noor, P. T. Arasu, and A. R. Sadrolhosseini, “Investigation of the performance of an SPR-based optical fiber sensor using finitedifference time domain,” Current Applied Physics, 2013, 13(7): 1354–1358.

Yusser AL-QAZWINI, A. S. M. NOOR, T. K. YADAV, M. H. YAACOB, S. W. HARUN, M. A. MAHDI. Performance Evaluation of a Bilayer SPR-Based Fiber Optic RI Sensor With TiO2 Using FDTD Solutions[J]. Photonic Sensors, 2014, 4(4): 289–294.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!