Opto-Electronic Advances, 2019, 2 (1): 180017, Published Online: Mar. 26, 2019   

Laser machining of transparent brittle materials: from machining strategies to applications Download: 750次

Author Affiliations
1 Laser Micro/Nano Processing Lab, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 Department of Experimental Teaching, Guangdong University of Technology, Guangzhou 510006, China
Copy Citation Text

Xiaozhu Xie, Caixia Zhou, Xin Wei, Wei Hu, Qinglei Ren. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2019, 2(1): 180017.

References

[1] K Matsumaru, A Takata, K Ishizaki. Advanced thin dicing blade for sapphire substrate. Sci Technol Adv Mater, 2005, 6: 120-122.

[2] R Rao, J E Bradby, J S Williams. Patterning of silicon by indentation and chemical etching. Appl Phys Lett, 2007, 91: 123113.

[3] E S Prakash, K Sadashivappa, V Joseph, M Singaperumal. Nonconventional cutting of plate glass using hot air jet: experimental studies. Mechatronics, 2001, 11: 595-615.

[4] F Yuan, J A Johnson, D D Allred, R H Todd. Waterjet cutting of cross-linked glass. J Vac Sci Technol A, 1995, 13: 136-139.

[5] W Clower, V Kaajakari, C G Wilson. Laser-assisted wet etching of quartz crystal resonators. J Microelectromechan Syst, 2018, 27: 22-24.

[6] M V Udrea, A Alacakir, A Esendemir, O Kusdemir, O Pervan, et al.. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE, 2000, 4068: 657-662.

[7] GaribottiDomenickJDicing of micro-semiconductors: US3112850. 1963

    LiZ GDomenickJMulti-focal laser processing system: CN103111757A. 2013

[8] A Yadav, H Kbashi, S Kolpakov, N Gordon, K M Zhou, et al.. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Appl Phys A, 2017, 123: 369.

[9] A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media. Phys Rep, 2007, 441: 47-189.

[10] D P Banks, K S Kaur, R W Eason. Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE). Appl Surf Sci, 2009, 255: 8343-8351.

[11] G Lin, D Z Tan, F F Luo, D P Chen, Q Z Zhao, et al.. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid. J Alloys Compd, 2010, 507: L43-L46.

[12] K Zimmer, R Böhme, B Rauschenbach. Laser etching of fused silica using an adsorbed toluene layer. Appl Phys A, 2004, 79: 1883-1885.

[13] F Dausinger, H Hugel, V I Konov. Micromachining with ultrashort laser pulses: from basic understanding to technical applications. Proc SPIE, 2003, 5147: 106-115.

[14] C Foehl, D Breitling, K Jasper, J Radtke, . Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. Proc SPIE, 2002, 4426: 104-107.

[15] Wang Q Y. Femtosecond Laser Applications in Advanced Technologies (National Defense Industry Press, Beijing, China 2015).

[16] B N Chichkov, C Momma, S Nolte, F Von Alvensleben, A Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A, 1996, 63: 109-115.

[17] F Ahmed, M S Lee, H Sekita, T Sumiyoshi, M Kamata. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl Phys A, 2008, 93: 189-192.

[18] C H Tsai, C S Liou. Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng, 2003, 125: 519-528.

[19] K D Ye, C W An, M H Hong, Y F Lu. Wafer dicing by laser-induced thermal shock process. Proc SPIE, 2001, 4557: 442940.

[20] B Lan, M H Hong, K D Ye, Z B Wang, S X Cheng, et al.. Laser precision engineering of glass substrates. Jpn J Appl Phys43, 2004, 43: 7102-7106.

[21] K Yamamoto, N Hasaka, H Morita, E Ohmura. Thermal stress analysis on laser cross scribe of glass. J Laser Appl, 2010, 22: 937-943.

[22] X B Hu, Q Hao, Z R Guo, H P Zeng. Dicing of sapphire wafer with all-fiber picosecond laser. Chin J Lasers, 2017, 44: 0102016.

[23] Zhuang H W. Research on multifocal picosecond laser stealth dicing btittle materials (Jiangsu University, Zhenjiang, 2017).

[24] B Tan, K Venkatakrishnan. Dual-focus laser micro-machining. J Mod Opt, 2005, 52: 2603-2611.

[25] M V Udrea, A Alacakir, A Esendemir, O Kusdemir, O Pervan, et al.. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proc SPIE, 2000, 4068: 657-662.

[26] XieH ZZhangY YYangHLiJYiX YMulti-focus femtosecond laser scribing method applied to separation of light emitting diode (LED) device: CN102886609A. 2013

[27] AlbermannGMoellerSRohlederTLiJYiX YPlasma etching and stealth dicing laser process: US20160071770, 2016

[28] LopezJMishchikKChassagneBJavaux-LegerCHönningerCet alGlass cutting using ultrashort pulsed Bessel beams. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics Conference (ResearchGate, 2015)

[29] AlexeevA MKryzhanovskiyV IKhaitO VJavaux-LegerCHönningerCet alMethod for cutting non-metallic materials and device for carrying out said method: EP1506946A2. 2005

[30] BovatsekJAraiA YYoshinoFTransparent material processing with an ultrashort pulse laser: US8389891, 2013

[31] SeongC YKimH UKimN SKimB CComparison of laser glass cutting processes using ps and fs lasers. In International Congress on Applications of Laser & Electro-Optics Conference (ResearchGate, 2012)

[32] L F Ji, , T Y Yan, W H Wang, T R Wang, et al.. Research progress of ultrafast laser industrial applications based on filamentation. Opto Electron Eng, 2017, 44: 851-861.

[33] L M Kovachev, D A Georgieva. The long range filament stability: balance between non-paraxial diffraction and third-order nonlinearity. Proc SPIE 8770, 2013, 8770: 87701G.

[34] J F Daigle, O Kosareva, N Panov, M Bégin, F Lessard, et al.. A simple method to significantly increase filaments' length and ionization density. Appl Phys B, 2009, 94: 249-257.

[35] A Braun, G Korn, X Liu, D Du, J Squier, et al.. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett, 1995, 20: 73-75.

[36] A Brodeur, C Y Chien, F A Ilkov, S L Chin, O G Kosareva, et al.. Moving focus in the propagation of ultrashort laser pulses in air. Opt Lett, 1997, 22: 304-306.

[37] M Mlejnek, E M Wright, J V Moloney. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt Lett, 1998, 23: 382-384.

[38] D Z Tan, K N Sharafudeen, Y Z Yue, J R Qiu. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci, 2016, 76: 154-228.

[39] Z M Song, Z G Zhang, T Nakajima. Transverse-mode dependence of femtosecond filamentation. Opt Express, 2009, 17: 12217-12229.

[40] F Courvoisier, J Zhang, M K Bhuyan, M Jacquot, J M Dudley. Applications of femtosecond Bessel beams to laser ablation. Appl Phys A, 2013, 112: 29-34.

[41] K Sugioka, K Obata, M H Hong, D J Wu, L L Wong, et al.. Hybrid laser processing for microfabrication of glass. Appl Phys A, 2003, 77: 251-257.

[42] K Sugioka, K Obata, K Midorikawa, M H Hong, D J Wu, et al.. Advanced materials processing based on interaction of laser beam and a medium. J Photochem Photobiol A, 2003, 158: 171-178.

[43] M H Hong, K Sugioka, Y F Lu, K Midorikawa, T C Chong. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci, 2002, 186: 556-561.

[44] X Z Lu, F Jiang, T P Lei, R Zhou, C T Zhang, et al.. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3). Micromachines, 2017, 8: 300.

[45] A Stone, M Sakakura, Y Shimotsuma, K Miura, K Hirao, et al.. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater Des, 2018, 146: 228-238.

[46] C F Pan, K Y Chen, B Liu, L Ren, J R Wang, et al.. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol, 2017, 240: 314-323.

[47] H Gao, Y W Hu, Y Xuan, J Li, Y L Yang, et al.. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science, 2014, 346: 1352-1356.

[48] C He, F R Liu, M Wang, J W Yuan, J M Chen. Laser induced backside wet and dry etching of solar glass by short pulse ytterbium fiber laser irradiation. J Laser Appl, 2012, 24: 022005.

[49] K S Zelenska, S E Zelensky, L V Poperenko, K Kanev, V Mizeikis, et al.. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles. Opt Laser Technol, 2016, 76: 96-100.

[50] W Jiang, X Z Xie, X Wei, W Hu, Q L Ren, et al.. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation. Opt Mater Express, 2017, 7: 1565-1574.

[51] R Böhme, D Hirsch, K Zimmer. Laser etching of transparent materials at a backside surface adsorbed layer. Appl Surf Sci, 2006, 252: 4763-4767.

[52] R Böhme, K Zimmer. The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl Surf Sci, 2005, 247: 256-261.

[53] G Kopitkovas, T Lippert, J Venturini, C David, A Wokaun. Laser induced backside wet etching: mechanisms and fabrication of micro-optical elements. J Phys, 2014, 59: 526-532.

[54] C Vass, B Hopp, T Smausz, F Ignácz. Experiments and numerical calculations for the interpretation of the backside wet etching of fused silica. Thin Solid Films, 2004, 453-454: 121-126.

[55] K Zimmer. Analytical solution of the laser-induced temperature distribution across internal material interfaces. Int J Heat Mass Transfer, 2009, 52: 497-503.

[56] K Zimmer, M Ehrhardt, R Böhme. Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J Appl Phys, 2010, 107: 034908.

[57] X Z Xie, X D Huang, W Jiang, X Wei, W Hu, et al.. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions. Opt Laser Technol, 2017, 89: 59-68.

[58] Huang X D. Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire (Guangdong University of Technology, Guangzhou, 2015).

[59] T Sato, R Kurosaki, A Narazaki, Y Kawaguchi, H Niino. Flexible 3D deep microstructures of silica glass by laser-induced backside wet etching. Appl Phys A, 2010, 101: 319-323.

[60] M Mitsuishi, N Sugita, I Kono, S Warisawa. Analysis of laser micromachining in silica glass with an absorbent slurry. CIRP Ann, 2008, 57: 217-222.

[61] Z Q Huang, M H Hong, T B M Do, Q Y Lin. Laser etching of glass substrates by 1064 nm laser irradiation. Appl Phys A, 2008, 93: 159-163.

[62] Y X Yang, Q X Wang, T S Keat. Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason Sonochem, 2013, 20: 1098-1103.

[63] Y H, I L Chen. Dynamics of impacting a bubble by another pulsed-laser-induced bubble: jetting, fragmentation, and entanglement. Phys Rev E, 2008, 77: 026304.

[64] Hu M F. Study on laser induced cavitation bubbles and flow field distribution during laser-induced backside wet etching sapphire substrates (Guangdong University of Technology, Guangzhou, 2014).

[65] X Z Xie, X R Yuan, W F Chen, X Wei, W Hu, et al.. New development and applications of laser-induced cavitation bubbles. Laser Optoelectron Prog, 2013, 50: 080017.

[66] X Z Xie, M F Hu, W F Chen, X Wei, W Hu, et al.. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J Laser Micro Nanoeng, 2013, 8: 259-265.

[67] J Y Long, C X Zhou, Z Q Cao, X Z Xie, W Hu. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt Laser Technol, 2019, 109: 61-70.

[68] T Lee, D Jang, D Ahn, D Kim. Effect of liquid environment on laser-induced backside wet etching of fused silica. J Appl Phys, 2010, 107: 033112.

[69] X M Liu, Z Long, J He, X H Liu, Y F Hou, et al.. Temperature effect on the impact of a liquid-jet against a rigid boundary. Optik, 2013, 124: 1542-1546.

[70] W Soliman, T Nakano, N Takada, K Sasaki. Modification of Rayleigh-Plesset theory for reproducing dynamics of cavitation bubbles in liquid-phase laser ablation. Jpn J Appl Phys, 2010, 49: 116202.

[71] Z Q Cao, X Z Xie, W F Chen, X Wei, W Hu, et al.. Research progress of pressure detection and applications in liquid-assisted laser machining. Opto-Electron Eng, 2017, 44: 381-392.

[72] Cao Z Q. Study on the detection of cavitation and pressure in the process of laser induced backside wet etching of sapphire substrates. (Guangdong University of Technology, Guangzhou, 2018).

[73] L L Qiao, F He, C Wang, Y Cheng, K Sugioka, et al.. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys A, 2011, 102: 179-183.

[74] J Liu, Z Zhang, Z Lu, G Xiao, F Sun, et al.. Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses. Appl Phys B, 2007, 86: 151-154.

[75] S Queste, R Salut, S Clatot, J Y Rauch, C G Khan Malek. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol, 2010, 16: 1485-1493.

[76] L F Ji, Y Hu, J Li, W H Wang, Y J Jiang. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser. Appl Phys A, 2015, 121: 1163-1169.

[77] Gao X Y. Study on the development of working solution and processing mechanism of laser wet etching sapphire Substrat (Guangdong University of Technology, Guangzhou, 2014).

[78] Jiang W. Study on the mechanism of micro Nano suspended particle assisted laser-induced backside wet dicing of sapphire substrate. (Guangdong University of Technology, Guangzhou, 2017).

[79] J J Shen, G X Luo, Y Pan, Z J Liu, Z H Jiang. Research on glass cutting process base on 532 nm wavelength nanosecond laser. Appl Laser, 2015, 35: 493-499.

[80] A Rolo, J Coelho, M Pires. Laser glass marking: influence of pulse characteristics. Proc SPIE, 2005, 5958: 59583D.

[81] T Nakazumi, T Sato, A Narazaki, H Niino. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference. J Micromechan Microeng, 2016, 26: 095015.

[82] T Dumont, T Lippert, A Wokaun, P Leyvraz. Laser writing of 2D data matrices in glass. Thin Solid Films, 2004, 453-454: 42-45.

[83] X M Zhang, J Q Ma, Y F Ding. Analysis of marking glass with different process parameters based on super-pulsed laser. Adv Mater Res, 2013, 602-604: 929-933.

[84] T Sato, A Narazaki, H Niino. Fabrication of micropits by LIBWE for laser marking of glass materials. J Laser Micro/Nanoeng, 2017, 12: 248-253.

[85] X Ding, Y Yasui, Y Kawaguchi, H Niino, A Yabe. Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules. Appl Phys A, 2002, 75: 437-440.

[86] X Ding, Y Kawaguchi, H Niino, A Yabe. Laser-induced high-quality etching of fused silica using a novel aqueous medium. Appl Phys A, 2002, 75: 641-645.

[87] X M Ding, T Sato, Y Kawaguchi, H Niino. Laser-induced backside wet etching of sapphire. Jpn J Appl Phys, 2003, 42: 176-178.

[88] J Wang, H Niino, A Yabe. Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl Phys A, 1999, 69: S271-S273.

[89] H Niino, Y Kawaguchi, T Sato, A Narazaki, T Gumpenberger, et al.. Laser ablation of toluene liquid for surface micro-structuring of silica glass. Appl Surf Sci, 2006, 252: 4387-4391.

[90] I B Sohn, H K Choi, D Yoo, Y C Noh, J H Sung, et al.. Synchronized femtosecond laser pulse switching system based nano-patterning technology. Opt Mater, 2017, 69: 295-302.

[91] J Bekesi, J Meinertz, P Simon, J Ihlemann. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation. Appl Phys A, 2013, 110: 17-21.

Xiaozhu Xie, Caixia Zhou, Xin Wei, Wei Hu, Qinglei Ren. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2019, 2(1): 180017.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!