光子学报, 2015, 44 (2): 0201001, 网络出版: 2015-02-15   

Non-Kolmogorov湍流下外差激光雷达探测性能

Detection Performance of Heterodyne Lidar in Non-Kolmogorov Turbulence
作者单位
北京航空航天大学 电子信息工程学院, 北京 100191
摘要
基于Rytov近似和Huygens-Fresnel原理, 推导出外差激光雷达在non-Kolmogorov弱湍流中斜程探测时目标平面的平均光强和闪烁指数, 得到外差激光雷达系统效率, 并针对广义指数、天顶角、结构常量、基站结构、望远镜孔径和光束类型对系统效率的影响进行了研究.研究结果表明:当广义指数小于3.2或大于3.8时, 外差激光雷达的系统效率减小幅度较大;随着天顶角的增大系统效率逐渐减小;双基站结构外差激光雷达的系统效率小于单基站结构;随着望远镜孔径的增大, 系统效率存在最低值, 并最终趋于平缓;近场时平行光系统效率最大, 远场时发散光的系统效率最大.
Abstract
Based on Rytov approximation and extended Huygens-Fresnel principle, the analytical expressions for average intensity and scintillation index on target plane in non-Kolmogorov weak turbulence along slant paths were derived, the system efficiency of heterodyne lidar wass given. The system efficiency of heterodyne lidar is examined and the effects of exponent parameter, zenith angle, structure constant, system configurations and telescope aperture on system efficiency are also analyzed.It is shown that when the generalized index is less than 3.2 or greater than 3.8, the system efficiency decreases fast as the index increases. System efficiency decreases with the increase of zenith angle. System efficiency of bistatic configurations is smaller than that of monostatic configurations. With the increase of the telescope aperture, the system efficiency arrives the minimum, and eventually flattens out. In near field, the system efficiency of collimated beam is larger than the other two forms, but in far field the system efficiency of divergent beam is the largestone.
参考文献

[1] 戴永江. 激光雷达技术[M].电子工业出版社, 2010.

[2] WEITKAMP C. Range-resolved optical remote sensing of the Atmosphere[M].Springer, 2005.

[3] FREHLICH R G. Effects of refractive turbulence on coherent laser radar[J].Applied Optics, 1993, 32(12): 2122-2139.

[4] BANAKH V A, SMALIKHO I N, WERNER C. Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere[J].Applied Optics, 2000, 39(30): 5403-5414.

[5] BELMONTE A, RYE B J. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems[J].Applied Optics, 2000, 39(15): 2401-2411.

[6] FREHLICH R. Effects of refractive turbulence on ground-based verification of coherent Doppler lidar performance[J].Applied Optics, 2000, 39(24): 4237-4246.

[7] HE Wu-guang, WU Jian, YANG Chun-ping, et al. Numerical simulation of beam propagation through atmospheric turbulence for laser radar[C].International Society for Optics and Photonics, 2007: 683225-683225-8.

[8] HARDING C M, JOHNSTON R A, LANE R G. Fast simulation of a Kolmogorov phase screen[J].Applied Optics, 1999, 38(11): 2161-2170.

[9] 张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J].光电工程, 2006, 33(1): 14-19.

    ZHANG Hui-min, LI Xin-yang. Numerical simulation of wavefront phase screen distoted by atmospheric tarbulence[J].Opto-Electronic Engineering, 2006, 33(1): 14-19.

[10] BELMONTE A. Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance[J].Applied Optics, 2000, 39(30): 5426-5445.

[11] KOLMOGOROV A N. Local structure of tarbulence in an incompressible fluid at very high rey nolds numbers[J].Proceeding of the VSSR Academy of Science, 1941, 30: 301.

[12] RAO Chang-hui, JIANG Wen-han, LING Ning. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence[J].Journal of Modern Optics, 2000, 47(6): 1111-1126.

[13] ZILBERMAN A, GOLBRAIKH E, KOPEIKA N S. Lidar studies of aerosols and non-Kolmogorov turbulence in the Mediterranean troposphere[C].International Society for Optics and Photonics, 2005: 598702.

[14] TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence[C].International Society for Optics and Photonics, 2007: 65510E.

[15] TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence[J].Optical Engineering, 2008, 47(2): 026003.

[16] RYE B J. Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns[J].The Journal of the Oriental Society of Australia, 1981, 71(6): 687-691.

[17] RYE B J. Antenna parameters for incoherent backscatter heterodyne lidar[J].Applied Optics, 1979, 18(9): 1390-1398.

[18] ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[M].The International Society for Optical Engineering Press, 2005.

[19] 江月松,王帅会,欧军, 等. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量[J].物理学报, 2013, 62(21): 214201.

    JIANG Yue-song, WANG Shuai-hui, OU Jun, et al. Average capacity of free space optical systems for a Lagaerre-Gaussian beam propagating through non-Kolmongorov tarbulence[J].Acta Physica Sinica, 2013, 62(21): 214201.

[20] RYE B J, FREHLICH R G. Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target[J].Applied Optics, 1992, 31(15): 2891-2899.

[21] TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Free space optical system performance for a Gaussian beam propagating through non-Kolmogorov weak turbulence[J].Optical Engineering, 2009, 57(6): 1783-1788.

[22] CHEN Zhi-xiao, YU Song, WANG Tianyi, et al. Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects[J].Optics Communications, 2013, 287: 12-18.

[23] TANG Hua, YUAN Xue-jing, WANG Bao-qiang. Scintillation optimization of linear Gaussian beam array propagating through weak turbulence[J].Journal of Modern Optics, 2013 (ahead-of-print): 1-8.

唐华, 杨文静, 李环宇. Non-Kolmogorov湍流下外差激光雷达探测性能[J]. 光子学报, 2015, 44(2): 0201001. TANG Hua, YANG Wen-jing, LI Huan-yu. Detection Performance of Heterodyne Lidar in Non-Kolmogorov Turbulence[J]. ACTA PHOTONICA SINICA, 2015, 44(2): 0201001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!