中国激光, 2017, 44 (8): 0802008, 网络出版: 2017-09-13   

外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响 下载: 805次

Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding
作者单位
华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
引用该论文

张勋, 李若杨, 赵泽洋, 米高阳, 王春明, 胡席远. 外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响[J]. 中国激光, 2017, 44(8): 0802008.

Zhang Xun, Li Ruoyang, Zhao Zeyang, Mi Gaoyang, Wang Chunming, Hu Xiyuan. Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding[J]. Chinese Journal of Lasers, 2017, 44(8): 0802008.

参考文献

[1] Blinkov V A, Sheninkin M Z, Abralv M A. Grains of solidifying metal refined under vibrations[J]. Autom Weld, 1975, 28(11): 11-12.

[2] Wu C S, Yang F Z, Gao J Q. Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(1): 188-193.

[3] Malinowski-Brodnicka M, den Ouden G, Vink W J P. Effect of electromagnetic stirring on GTA welds in austenitic stainless steel[J]. Welding Journal, 1990, 69: 52s-59s.

[4] Mousavi M G. Hermans M J M, Richardson I M, et al. Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds[J]. Science and Technology of Welding and Joining, 2003, 8(4): 309-312.

[5] Liu Y B, Sun Q J, Liu J P, et al. Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel[J]. Materials Letters, 2015, 152: 29-31.

[6] Sundaresan S. Ram G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3): 151-160.

[7] 岳建锋, 李亮玉, 刘文吉, 等. 基于外加高频交变磁场下向MAG焊熔池成形控制[J]. 机械工程学报, 2013, 49(8): 65-70.

    Yue Jianfeng, Li Liangyu, Liu Wenji, et al. Downward welding pool shape control based on exterior high frequency alternative magnetic field[J]. Journal of Mechanical Engineering, 2013, 49(8): 65-70.

[8] Yao Q, Luo Z, Li Y, et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld[J]. Materials and Design, 2014, 63: 200-207.

[9] ZhouJ, Tsai HL. Application of electromagnetic force in laser welding[C]. ASME International Mechanical Engineering Congress and Exposition, 2007, 8: 1025- 1030.

[10] 杨德才, 刘金和. 外加磁场对激光焊接熔深的影响[J]. 激光技术, 2001, 25(5): 347-350.

    Yang Decai, Liu Jinhe. Effect of outer magnetic field on laser beam welding penetration depth[J]. Laser Technology, 2001, 25(5): 347-350.

[11] 陈武柱, 彭云, 王成, 等. 激光焊接等离子体的扩散行为及电磁场对其作用的研究[J]. 中国激光, 2002, 29(s1): 529-531.

    Chen Wuzhu, Peng Yun, Wang Cheng, et al. Diffusion of plasma and effect of electric and magnetic fields in laser welding[J]. Chinese J Lasers, 2002, 29(s1): 529-531.

[12] Vollertsen F, Thomy C. Magnetic stirring during laser welding of aluminum[J]. Journal of Laser Applications, 2006, 18(1): 28-34.

[13] Gatzen M, Tang Z, Vollertsen F, et al. X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum[J]. Journal of Laser Applications, 2011, 23(3): 032002.

[14] 余圣甫, 张友寿, 雷毅, 等. 非磁性合金激光焊旋转磁场搅拌机理[J]. 焊接学报, 2006, 27(3): 109-112.

    Yu Shengfu, Zhang Youshou, Lei Yi, et al. Mechanisms of rotational magnetic field stirring of laser welded non-magnetic alloy for laser welding[J]. Transactions of the China Welding Institution, 2006, 27(3): 109-112.

[15] Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578-591.

[16] 王维, 刘奇, 杨光, 等. 电磁搅拌作用下激光熔池电磁场、温度场和流场的数值模拟[J]. 中国激光, 2015, 42(2): 0202007.

    Wang Wei, Liu Qi, Yang Guang, et al. Numerical simulation of electromagnetic flow, temperature field and flow field in laser molten pool with electromagnetic stirring[J]. Chinese J Lasers, 2015, 42(2): 0202007.

[17] 宋诗英, 王梁, 胡勇, 等. 稳态磁场辅助激光熔注制备梯度涂层[J]. 中国激光, 2016, 43(5): 0503005.

    Song Shiying, Wang Liang, Hu Yong, et al. Graded coating produced by laser melt injection under steady magnetic field[J]. Chinese J Lasers, 2016, 43(5): 0503005.

[18] 王梁, 胡勇, 宋诗英, 等. 稳态磁场辅助对激光熔凝层表面波纹的抑制作用研究[J]. 中国激光, 2015, 42(11): 1103005.

    Wang Liang, Hu Yong, Song Shiying, et al. Suppression effect of a steady magnetic field on surface undulation during laser remelting[J]. Chinese J Lasers, 2015, 42(11): 1103005.

[19] KouS. Welding metallurgy[M]. New Jersey: John Wiley and Sons, 2002: 294- 295.

[20] Zhang X, Zhao Z Y, Wang C M, et al. The effect of external longitudinal magnetic field on laser-MIG hybrid welding[J]. International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1735-1743.

[21] 赵博. 窄间隙MAG焊电弧行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 89- 94.

    ZhaoBo. Research on arc behaviors of narrow-gap MAG[D]. Harbin: Harbin Institute of Technology, 2009: 89- 94.

[22] Capello E, Chiarello P, Previtali B, et al. Laser welding and surface treatment of a 22Cr-5Ni-3Mo duplex stainless steel[J]. Materials Science and Engineering A, 2003, 351(1/2): 334-343.

[23] John CL, Damian JK. Welding metallurgy and weldability of stainless steels[M]. New Jersey: John Wiley and Sons, 2005.

张勋, 李若杨, 赵泽洋, 米高阳, 王春明, 胡席远. 外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响[J]. 中国激光, 2017, 44(8): 0802008. Zhang Xun, Li Ruoyang, Zhao Zeyang, Mi Gaoyang, Wang Chunming, Hu Xiyuan. Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding[J]. Chinese Journal of Lasers, 2017, 44(8): 0802008.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!