红外技术, 2020, 42 (3): 213, 网络出版: 2020-04-13   

温度与微结构高度误差对衍射光学元件衍射效率的影响研究

Research on the Influence of Temperature and Microstructure Height Error on Diffraction Efficiency for Diffractive Optical Elements
作者单位
盐城师范学院物理与电子工程学院, 江苏盐城 224007
摘要
基于衍射光学元件的衍射效率与微结构高度误差的关系, 提出了环境温度、微结构高度误差与衍射效率和带宽积分平均衍射效率的数学分析模型。研究了环境温度变化对带宽积分平均衍射效率的影响, 分析了工作在一定温度范围内时带宽积分平均衍射效率与相对微结构高度误差的关系。对于工作在 8~12 .m长波红外波段的衍射光学元件, 偏离设计波长越远, 其衍射效率受温度的影响越大。温度的变化会引起 100%衍射效率对应的峰值相对微结构高度误差发生改变。当衍射光学元件的相对微结构高度误差在±15%范围内时, 衍射效率在-40℃~80℃的整个温度范围内高于 91.89%, 带宽积分平均衍射效率在整个温度范围内高于 88.58%。
Abstract
Based on the relationship between diffraction efficiency and microstructure height error for diffractive optical elements (DOEs), mathematical analytical models of environment temperature, microstructure height error, and diffraction efficiency/polychromatic integral diffraction efficiency (PIDE) were put forward. The influence of ambient temperature on the PIDE was researched and the relationship between the PIDE and microstructure height error within a certain temperature range was analyzed. For a DOE working within an 8-12 .m long-waveband infrared range, the influence of temperature on the diffraction efficiency was significant as the wavelength deviated from the designed value. The peak relative microstructure height error corresponding to the 100% diffraction efficiency changed with the change of temperature. When the relative microstructure height error of the DOE was within ±15%, the diffraction efficiency was higher than 91.89% in the temperature range from-40℃ to 80℃ and the PIDE was higher than 88.58% in the entire temperature range.
参考文献

[1] Missig M D, Morris G M. Diffractive optics applied to eyepiece design[J]. Applied Optics, 1995, 34(14): 2452-2461.

[2] 刘秀军, 张金旺 , 张华卫 , 等. 中波红外制冷型光学系统消热差设计 [J].应用光学 , 2013, 34(3): 391-396. LIU Xiujun, ZHANG Jinwang, ZHANG Huawei, et al. Athermal design of cooled MWIR optical system[J]. Journal of Applied Optics, 2013, 34(3): 391-396.

[3] 王昊, 康福增, 赵卫, 等. 一种红外双波段衍射望远镜的光学设计 [J]. 红外与毫米波学报, 2019, 38(1): 39-43. WANG Hao, KANG FuZeng, ZHAO Wei, et al. An optical design for dual-band infrared diffractive telescope[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 39-43.

[4] Wood A P. A hybrid refractive-diffractive lens for manufacture by diamond turning[J]. SPIE, 1991, 1573: 122-128.

[5] C Gary Blough, M Rossi, Stephen K Mack, et al. Single-point diamond turning and replication of visible and near-infrared diffractive optical elements[J]. Applied Optics, 1997, 36(20): 4848-4654.

[6] Kim Younggwang, Rhee Hyuggyo, Ghim Youngsik, et al. Dual-line fabrication method in direct laser lithography to reduce the manufacturing time of diffractive optics elements[J]. Optics Express, 2017, 25(3): 1636-1645.

[7] Kalima V, Pietarinen J, Siitonen S, et al. Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding[J]. Optical Materials, 2007, 30(2): 285-291.

[8] 程习敏, 白瑜, 谢伟民 , 等. 衍射光学元件的加工工艺及其在各种光谱镜头中的应用[J].光电技术应用 , 2014, 29(2): 31-38. CHENG Ximin, BAI Yu, XIE Weimin, et al. Fabrication Technology and Application in Spectral Lens of Diffractive Optical Elements[J]. Electro-Optic Technology Application, 2014, 29(2): 31-38.

[9] 高龙, 薛常喜 , 杨红芳 , 等. 偏心误差对长波红外波段多层衍射光学元件衍射效率的影响[J].光学学报 , 2015, 35(6): 0623004. GAO Long, XUE Changxi, YANG Hongfang, et al. Effect of Decenter Errors on Diffraction Efficiency of Multilayer Diffractive Optical Elements in Long Infrared Waveband[J]. Acta Optica Sinica, 2015, 35(6): 0623004.

[10] 毛珊, 崔庆丰. 双层衍射元件加工误差对带宽积分平均衍射效率的影响[J].光学学报 , 2016, 36(1): 0105001. MAO Shan, CUI Qingfeng. Effect on Polychromatic Integral Diffraction Efficiency for Two-Layer Diffractive Optics[J]. Acta Optica Sinica, 2016, 36(1): 0105001.

[11] 杨亮亮, 刘成林 , 张志海, 等. 斜入射微结构高度误差的优化设计 [J].激光与光电子学进展, 2017, 54(6): 060501. YANG Liangliang, LIU Chenglin, ZHANG Zhihai, et al. Optimal Design of Depth-Scaling Error with Oblique Incidence[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060501.

[12] 杨亮亮 . 双层衍射光学元件微结构高度的优化设计 [J]. 红外, 2019, 40(1): 11-15. YANG Liangliang. Optimal Design of the Microstructure Height for Double-layer Diffractive Optical Elements[J]. INFRARED, 2019, 40(1): 11-15.

[13] Thomas Hessler, Markus Rossi, Rino E Kunz, et al. Analysis and optimization of fabrication of continuous-relief diffractive optical elements[J]. Applied Optics, 1998, 37(19): 4069-4079.

[14] 常笑薇. 环境温度变化对双波段谐衍射光学元件衍射效率的影响 [J]. 北京交通大学学报, 2016, 40(6): 122-126. CHANG Xiaowei. Relationship between diffraction efficiency and environment temperature change for double wavebands for harmonic diffractive optics[J]. Journal of Beijing Jiaotong University, 2016, 40(6): 122-126.

[15] PIAO Mingxu, CUI Qingfeng, ZHANG Bo, et al. Optimization method of multilayer diffractive optical elements with consideration of ambient temperature[J]. Applied optics, 2018, 57(30): 8861-8869.

杨亮亮, 赵勇兵, 唐健, 郭仁甲. 温度与微结构高度误差对衍射光学元件衍射效率的影响研究[J]. 红外技术, 2020, 42(3): 213. YANG Liangliang, ZHAO Yongbing, TANG Jian, GUO Renjia. Research on the Influence of Temperature and Microstructure Height Error on Diffraction Efficiency for Diffractive Optical Elements[J]. Infrared Technology, 2020, 42(3): 213.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!