激光与光电子学进展, 2019, 56 (15): 153002, 网络出版: 2019-08-05   

基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算 下载: 976次

Hyperspectral Estimation of Wheat Leaf Water Content Using Fractional Differentials and Successive Projection Algorithm-Back Propagation Neural Network
作者单位
1 新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046
2 新疆绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
3 新疆智慧城市与环境建模普通高校重点实验室, 新疆 乌鲁木齐 830046
引用该论文

吾木提·艾山江, 买买提·沙吾提, 马春玥. 基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J]. 激光与光电子学进展, 2019, 56(15): 153002.

Hasan Umut, Sawut Mamat, Chunyue Ma. Hyperspectral Estimation of Wheat Leaf Water Content Using Fractional Differentials and Successive Projection Algorithm-Back Propagation Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153002.

参考文献

[1] Rodríguez-Pérez J R, Ordóñez C, González-Fernández A B, et al. . Leaf water content estimation by functional linear regression of field spectroscopy data[J]. Biosystems Engineering, 2018, 165: 36-46.

[2] Fang M H, Ju W M, Zhan W F, et al. A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves[J]. Remote Sensing of Environment, 2017, 196: 13-27.

[3] 林毅, 李倩, 王宏博, 等. 高光谱反演植被水分含量研究综述[J]. 中国农学通报, 2015, 31(3): 167-172.

    Lin Y, Li Q, Wang H B, et al. Research summary of vegetation water content inversion with hyperspectral technology[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 167-172.

[4] 梁亮, 张连蓬, 林卉, 等. 基于导数光谱的小麦冠层叶片含水量反演[J]. 中国农业科学, 2013, 46(1): 18-29.

    Liang L, Zhang L P, Lin H, et al. Estimating canopy leaf water content in wheat based on derivative spectra[J]. Scientia Agricultura Sinica, 2013, 46(1): 18-29.

[5] 邓兵, 杨武年, 慕楠, 等. 基于光谱分析与角度斜率指数的植被含水量研究[J]. 光谱学与光谱分析, 2016, 36(8): 2546-2552.

    Deng B, Yang W N, Mu N, et al. The research of vegetation water content based on spectrum analysis and angle slope index[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2546-2552.

[6] Dobrowski S, Pushnik J, Zarco-Tejada P, et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment, 2005, 97(3): 403-414.

[7] 田永超, 朱艳, 曹卫星, 等. 小麦冠层反射光谱与植株水分状况的关系[J]. 应用生态学报, 2004, 15(11): 2072-2076.

    Tian Y C, Zhu Y, Cao W X, et al. Relationship between canopy reflectance and plant water status of wheat[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2072-2076.

[8] 王圆圆, 李贵才, 张立军, 等. 利用偏最小二乘回归从冬小麦冠层光谱提取叶片含水量[J]. 光谱学与光谱分析, 2010, 30(4): 1070-1074.

    Wang Y Y, Li G C, Zhang L J, et al. Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 1070-1074.

[9] Chen D Y, Huang J F, Jackson T J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands[J]. Remote Sensing of Environment, 2005, 98(2/3): 225-236.

[10] 郑兴明, 丁艳玲, 赵凯, 等. 基于Landsat 8 OLI数据的玉米冠层含水量反演研究[J]. 光谱学与光谱分析, 2014, 34(12): 3385-3390.

    Zheng X M, Ding Y L, Zhao K, et al. Estimation of vegetation water content from Landsat 8 OLI data[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3385-3390.

[11] 李召良, 秦其明, 等. 全覆盖植被冠层水分遥感监测的一种方法: 短波红外垂直失水指数[J]. 中国科学, 2007, 37(7): 957-965.

    Ghulam A, Li Z L, Qin Q M, et al. A method for remote sensing monitoring of total vegetation canopy water: short wave infrared vertical water loss index[J]. Science in China, 2007, 37(7): 957-965.

[12] 徐继刚, 冯新泸, 管亮, 等. 分数阶微分在红外光谱数据预处理中的应用[J]. 化工自动化及仪表, 2012, 39(3): 347-351.

    Xu J G, Feng X L, Guan L, et al. Fractional differential application in reprocessing infrared spectral data[J]. Control and Instruments in Chemical Industry, 2012, 39(3): 347-351.

[13] 张文文, 杨可明, 夏天, 等. 光谱分数阶微分与玉米叶片重金属铜含量的相关性分析[J]. 科学技术与工程, 2017, 17(25): 33-38.

    Zhang W W, Yang K M, Xia T, et al. Correlation analysis on spectral fractional-order differential and the content of heavy metal copper in corn leaves[J]. Science Technology and Engineering, 2017, 17(25): 33-38.

[14] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38(1): 1-24.

    Lin S M, Xu C J. Theoretical and numerical investigation of fractional differential equations[J]. Mathematica Numerica Sinica, 2016, 38(1): 1-24.

[15] 张东. 塔西甫拉提·特依拜, 张飞, 等. 分数阶微分算法对盐渍土高光谱数据的影响研究[J]. 光学学报, 2016, 36(3): 0330002.

    Zhang D, Tiyip T, Zhang F, et al. Effect of fractional differential algorithm on hyperspectral data of saline soil[J]. Acta Optica Sinica, 2016, 36(3): 0330002.

[16] Liu K, Chen X J, Li L M, et al. A consensus successive projections algorithm-multiple linear regression method for analyzing near infrared spectra[J]. Analytica Chimica Acta, 2015, 858: 16-23.

[17] 刘明博, 唐延林, 李晓利, 等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J]. 红外与激光工程, 2014, 43(4): 1265-1271.

    Liu M B, Tang Y L, Li X L, et al. Feasibility of using successive projections algorithm in spectral monitoring of rice leaves nitrogen contents[J]. Infrared and Laser Engineering, 2014, 43(4): 1265-1271.

[18] 刘全明, 成秋明, 王学, 等. 河套灌区土壤盐渍化微波雷达反演[J]. 农业工程学报, 2016, 32(16): 109-114.

    Liu Q M, Cheng Q M, Wang X, et al. Soil salinity inversion in Hetao Irrigation district using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 109-114.

[19] , 等. 基于WorldView-2影像的土壤含盐量反演模型[J]. 农业工程学报, 2017, 33(24): 200-206.

    Umut H, Mamat S, Ilyas N, et al. Inversion model of soil salt content based on WorldView-2 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 200-206.

吾木提·艾山江, 买买提·沙吾提, 马春玥. 基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J]. 激光与光电子学进展, 2019, 56(15): 153002. Hasan Umut, Sawut Mamat, Chunyue Ma. Hyperspectral Estimation of Wheat Leaf Water Content Using Fractional Differentials and Successive Projection Algorithm-Back Propagation Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 153002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!