激光与光电子学进展, 2020, 57 (18): 180004, 网络出版: 2020-09-02   

基于纳米探针的肿瘤光声成像研究

Application of Nanoprobes in Photoacoustic Cancer Imaging
作者单位
苏州大学功能纳米与软物质研究院,江苏 苏州 215123
摘要
随着光声成像技术和纳米材料的发展,多功能纳米探针的设计和制备在光声成像领域受到了广泛的关注。基于此,主要总结了近年来纳米光声探针在生物医学成像中的应用。根据纳米探针固有的理化性质,将其分成两大类:一类是具有强光吸收性能的光声成像探针,主要包括金基纳米探针、碳基纳米探针、金属硫/硒/碳化物、黑磷、有机小分子吲哚菁绿(ICG)及黑色素等,这类纳米探针通过高通透性和滞留(EPR)效应富集到肿瘤部位,固有的强光吸收性能有利于光声成像指引的光热治疗;另外一类是肿瘤微环境触发的光声成像探针,这些探针本身没有近红外吸收性能,经微环境的酸性pH值、内源双氧水(H2O2)或过表达的谷胱甘肽(GSH)激活后,探针具有很强的近红外吸收性能,实现了肿瘤的光声成像介导光学治疗。将光声成像和光学治疗相结合以实时监测肿瘤治疗效果,有利于推进纳米探针的诊疗一体化。
Abstract
With the development of photoacoustic (PA) imaging and nanomaterials, the design and preparation of multifunctional photoacoustic nanoprobes has attracted increasing attentions in the field of PA imaging. In this review, we mainly summarize the recent application of photoacoustic nanoprobes in biomedical imaging. According to the inherent physical and chemical properties, these photoacoustic nanoprobes are divided into two main categories. One is the nanoprobes for PA imaging with strong near-infrared (NIR) absorption, which includes gold-based nanoprobes, carbon-based nanoprobes, metal sulfide/ selenide/ carbide, black phosphorus, indocyanine green (ICG), melanin, and so on. Due to the enhanced permeation and retention (EPR) effect, these nanoprobes could be highly accumulated in tumor sites, and the inherent strong NIR absorption could be helpful to PA imaging-guided photothermal therapy (PTT). The other category is the tumor microenvironment (TME)-triggered nanoprobes for PA imaging. These nanoprobes themselves have not absorption, but after TME-triggering using acidic pH values, endogenous hydrogen peroxide (H2O2), or over-expressed glutathione (GSH), they would exhibit strong NIR absorption, and thus the PA imaging-guided phototherapy is achieved. In addition, the combination of PA imaging and phototherapy can monitor the therapeutic effects in real time and promote the application of nanoprobes in cancer theranostics.
参考文献

[1] . Cancer statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(1): 7-30.

[2] , et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging[J]. Nature Medicine, 2007, 13(1): 95-99.

[3] . O'Malley W, Kubeil M, et al. Nanomaterials: applications in cancer imaging and therapy[J]. Advanced Materials, 2011, 23(12): H18-H40.

[4] , et al. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential[J]. Nature Reviews Cancer, 2012, 12(5): 363-368.

[5] . Optical imaging in drug discovery and diagnostic applications[J]. Advanced Drug Delivery Reviews, 2005, 57(8): 1087-1108.

[6] . Deep reflection-mode photoacoustic imaging of biological tissue[J]. Journal of Biomedical Optics, 2007, 12(6): 060503.

[7] . Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4).

[8] . Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4): 602-631.

[9] , et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(21): 5343-5348.

[10] , 等. 组织光声弹性成像[J]. 中国激光, 2018, 45(3): 0307010.

    , et al. Photoacoustic elastography for biological tissue[J]. Chinese Journal of Laser, 2018, 45(3): 0307010.

[11] , et al. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite[J]. Advanced Materials, 2017, 29(6): 1604764.

[12] . Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles[J]. Small, 2017, 13(30): 1700710.

[13] . 纳米尺度下的光声效应及纳米探针光声转换机制研究[J]. 中国激光, 2018, 45(2): 0207026.

    . Study on photoacoustic effect in nanoscale and photoacoustic conversion mechanism of nanoprobes[J]. Chinese Journal of Lasers, 2018, 45(2): 0207026.

[14] , et al. Nanoparticles for photoacoustic imaging[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2009, 1(4): 360-368.

[15] . The tumor microenvironment and its role in promoting tumor growth[J]. Oncogene, 2008, 27(45): 5904-5912.

[16] . Jr. Cancer and the tumor microenvironment: a review of an essential relationship[J]. Cancer Chemotherapy and Pharmacology, 2009, 63(4): 571-582.

[17] . Recent advances in targeted tumor chemotherapy based on smart nanomedicines[J]. Small, 2018, 14(45): 1802417.

[18] . 基于光学系统的血管内高集成多模态成像技术[J]. 中国激光, 2016, 43(12): 1200001.

    . Multimodality intravascular imaging technologies based on optical system[J]. Chinese Journal of Lasers, 2016, 43(12): 1200001.

[19] , et al. Recent advances in photoacoustic imaging for deep-tissue biomedical applications[J]. Theranostics, 2016, 6(13): 2394-2413.

[20] , et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe[J]. Angewandte Chemie, 2012, 51(6): 1448-1451.

[21] , et al. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure[J]. Optics Letters, 2011, 36(7): 1029-1031.

[22] . Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release[J]. Accounts of Chemical Research, 2014, 47(1): 138-148.

[23] , et al. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease activity[J]. Nanoscale, 2011, 3(3): 950-953.

[24] , et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging[J]. Biomaterials, 2016, 102: 87-97.

[25] , et al. Human CIK cells loaded with Au nanorods as a theranostic platform for targeted photoacoustic imaging and enhanced immunotherapy and photothermal therapy[J]. Nanoscale Research Letters, 2016, 11(1): 285.

[26] , et al. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars[J]. Small, 2015, 11(15): 1801-1810.

[27] , et al. Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies[J]. Advanced Healthcare Materials, 2014, 3(8): 1283-1291.

[28] , et al. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy[J]. Advanced Materials, 2015, 27(33): 4910-4917.

[29] , et al. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia[J]. Nano Research, 2016, 9(4): 1043-1056.

[30] . Multifunctional gold-based nanocomposites for theranostics[J]. Biomaterials, 2016, 108: 13-34.

[31] , et al. ChemInform abstract: recent advances in near-infrared absorption nanomaterials as photoacoustic contrast agents for biomedical imaging[J]. ChemInform, 2015, 46(15): 35-52.

[32] , et al. Measuring the optical absorption cross sections of Au-Ag nanocages and Au nanorods by photoacoustic imaging[J]. Journal of Physical Chemistry C, 2009, 113(21): 9023-9028.

[33] , et al. Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy[J]. Advanced Materials, 2016, 28(40): 8950-8958.

[34] , et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chemical Reviews, 2015, 115(19): 10816-10906.

[35] , et al. Recent advances in carbon nanomaterials for cancer phototherapy[J]. Chemistry: A European Journal, 2019, 25(16): 3993-4004.

[36] , et al. Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation[J]. Angewandte Chemie, 2017, 56(11): 2889-2892.

[37] , et al. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy[J]. Biomaterials, 2016, 103: 219-228.

[38] , et al. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery[J]. Journal of Controlled Release, 2015, 210: 230-245.

[39] . Carbon nanotubes for biomedical imaging: the recent advances[J]. Advanced Drug Delivery Reviews, 2013, 65(15): 1951-1963.

[40] , et al. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging[J]. ACS Nano, 2015, 9(3): 2711-2719.

[41] , et al. Two-dimensional transistors beyond graphene and TMDCs[J]. Chemical Society Reviews, 2018, 47(16): 6388-6409.

[42] , et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[43] , et al. 2D nanomaterials for cancer theranostic applications[J]. Advanced Materials, 2020, 32(13): 1902333.

[44] , et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy[J]. Advanced Materials, 2014, 26(12): 1886-1893.

[45] , et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles[J]. Theranostics, 2014, 4(2): 134-141.

[46] , et al. Albumin-assisted synthesis of ultrasmall FeS2 nanodots for imaging-guided photothermal enhanced photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 332-340.

[47] , et al. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors[J]. Advanced Functional Materials, 2016, 26(47): 8715-8725.

[48] , et al. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor[J]. Advanced Materials, 2017, 29(44): 1704136.

[49] , et al. Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics[J]. Angewandte Chemie, 2017, 56(42): 12991-12996.

[50] , et al. Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22129-22140.

[51] , et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer[J]. Advanced Materials, 2016, 28(40): 8927-8936.

[52] , et al. Facile fabrication of near-infrared responsive and chitosan-functionalized Cu2Se nanoparticles for cancer photothermal therapy[J]. Chemistry——An Asian Journal, 2016, 11(21): 3032-3039.

[53] , et al. Photothermal therapy: metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy[J]. Small, 2016, 12(30): 4158.

[54] , et al. Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy[J]. Nanoscale, 2015, 7(48): 20757-20768.

[55] , et al. FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy[J]. Advanced Functional Materials, 2016, 26(13): 2185-2197.

[56] , et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.

[57] , et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.

[58] , et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano, 2017, 11(12): 12696-12712.

[59] , et al. Intracellular microRNAs accurate detection using functional Mo2C quantum dots nanoprobe[J]. Chemical Communications, 2019, 55(71): 10615-10618.

[60] , et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9: 372-377.

[61] , et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.

[62] . Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465-2468.

[63] , et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nature Communications, 2016, 7(1): 12967.

[64] , et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Advanced Materials, 2017, 29(1): 1603276.

[65] , et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer[J]. Biomaterials, 2016, 91: 81-89.

[66] , et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer[J]. Small, 2017, 13(11): 1602896.

[67] . et al . Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes[J]. Journal of Biomedical Optics, 2010, 15(4): 046010.

[68] , et al. Photoacoustic probes for ratiometric imaging of copper(II)[J]. Journal of the American Chemical Society, 2015, 137(50): 15628-15631.

[69] , et al. Stable J-aggregation of an aza-BODIPY-lipid in a liposome for optical cancer imaging[J]. Angewandte Chemie, 2019, 131(38): 13528-13533.

[70] , et al. Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy[J]. Advanced Materials, 2015, 27(34): 5063-5069.

[71] , et al. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification[J]. Nanoscale, 2016, 8(30): 14448-14456.

[72] , et al. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy[J]. Biomaterials, 2018, 165: 1-13.

[73] , et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy[J]. ACS Nano, 2014, 8(12): 12310-12322.

[74] , et al. Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging[J]. Pharmaceutical Research, 2010, 27(9): 1900-1913.

[75] . Photoprotective properties of skin melanin[J]. British Journal of Dermatology, 2002, 146(61): 7-10.

[76] . The function of melanin[J]. Archives of Dermatology, 1986, 122(5): 507-508.

[77] . What is the function of melanin?[J]. Archives of Dermatology, 1985, 121(9): 1160-1163.

[78] . Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.

[79] , et al. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer[J]. Theranostics, 2018, 8(6): 1591-1606.

[80] . Hypoxia, inflammation, and the tumor microenvironment in metastatic disease[J]. Cancer and Metastasis Reviews, 2010, 29(2): 285-293.

[81] , et al. A review of the development of tumor vasculature and its effects on the tumor microenvironment[J]. Hypoxia, 2017, 5: 21-32.

[82] , et al. Tumor microenvironment-enabled nanotherapy[J]. Advanced Healthcare Materials, 2018, 7(8): 1701156.

[83] . Dual-targeted nanomedicines for enhanced tumor treatment[J]. Nano Today, 2018, 18: 65-85.

[84] , et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 2016, 28(19): 3662-3668.

[85] , et al. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Advanced Materials, 2015, 27(43): 6820-6827.

[86] , et al. pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging[J]. Chemistry of Materials, 2017, 29(12): 5216-5224.

[87] , et al. A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion[J]. Journal of the American Chemical Society, 2016, 138(26): 8156-8164.

[88] . Reconciling the chemistry and biology of reactive oxygen species[J]. Nature Chemical Biology, 2008, 4(5): 278-286.

[89] . The common biology of cancer and ageing[J]. Nature, 2007, 448(7155): 767-774.

[90] . ROS stress in cancer cells and therapeutic implications[J]. Drug Resistance Updates, 2004, 7(2): 97-110.

[91] , et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma[J]. Nano Letters, 2019, 19(1): 203-209.

[92] , et al. Molecularly engineered theranostic nanoparticles for thrombosed vessels: H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy[J]. ACS Nano, 2018, 12(1): 392-401.

[93] , et al. Disulfide-cleavage-triggered chemosensors and their biological applications[J]. Chemical Reviews, 2013, 113(7): 5071-5109.

[94] Sayin VI, Ibrahim MX, LarssonE, et al., 2014, 6(221): 221ra15.

[95] . Glutathione in cancer biology and therapy[J]. Critical Reviews in Clinical Laboratory Sciences, 2006, 43(2): 143-181.

[96] , et al. Redox distress and genetic defects conspire in systemic autoinflammatory diseases[J]. Nature Reviews Rheumatology, 2015, 11(11): 670-680.

[97] , et al. A glutathione (GSH)-responsive near-infrared (NIR) theranostic prodrug for cancer therapy and imaging[J]. Analytical Chemistry, 2016, 88(12): 6450-6456.

[98] , et al. Bimetallic oxide MnMoOX nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy[J]. Nano Letters, 2018, 18(9): 6037-6044.

[99] , et al. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23555-23563.

[100] , et al. Switchable photoacoustic imaging of glutathione using MnO2 nanotubes for cancer diagnosis[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44231-44239.

[101] , et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery[J]. Journal of Controlled Release, 2011, 152(1): 2-12.

[102] , et al. A single composition architecture-based nanoprobe for ratiometric photoacoustic imaging of glutathione (GSH) in living mice[J]. Small, 2018, 14(11): 1703400.

[103] , et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics[J]. Theranostics, 2016, 6(6): 762-772.

[104] , et al. Recent advances in different modal imaging-guided photothermal therapy[J]. Biomaterials, 2016, 106: 144-166.

[105] . Photodynamic therapy[J]. Drugs & Aging, 1999, 15(1): 49-68.

[106] , et al. Photodynamic therapy in dentistry: a literature review[J]. Clinical Oral Investigations, 2013, 17(4): 1113-1125.

[107] , et al. Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy[J]. Journal of Biomedical Nanotechnology, 2015, 11(1): 117-125.

[108] , et al. Nano-graphene in biomedicine: theranostic applications[J]. Chemical Society Reviews, 2013, 42(2): 530-547.

[109] , et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy[J]. ACS Nano, 2013, 7(6): 5320-5329.

[110] , et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5): 1603864.

[111] , et al. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy[J]. Chemical Communications, 2018, 54(62): 8579-8582.

[112] , et al. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy[J]. Small, 2018, 14(4): 1702815.

[113] , et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation[J]. Journal of the American Chemical Society, 2015, 137(35): 11376-11382.

巩飞, 程亮, 刘庄. 基于纳米探针的肿瘤光声成像研究[J]. 激光与光电子学进展, 2020, 57(18): 180004. 巩飞, 程亮, 刘庄. Application of Nanoprobes in Photoacoustic Cancer Imaging[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!