光电工程, 2017, 44 (10): 983, 网络出版: 2017-11-27  

多旋翼无人飞行器机载光电平台的复合补偿控制方法

Composite compensation control method for airborne opto-electronic platform mounted on multi-rotor UAV
作者单位
1 中北大学机械工程学院,太原 030051
2 中国科学院长春光学精密机械与物理研究所,长春 130033
摘要
为了提高多旋翼无人飞行器机载光电平台的扰动补偿能力,实现机载光电平台的稳定跟踪控制,提出一种基于改进扰动观测器和径向基函数(RBF)神经网络逼近的复合补偿控制方法。首先,对现有扰动观测器结构进行改进,构建基于速度信号的改进型扰动观测器,并分析了干扰补偿能力和稳健性;然后,利用RBF神经网络的函数逼近性质解决非线性未知扰动的补偿问题;最后,基于Lyapunov稳定性原理设计出复合补偿控制结构。实验结果表明,机载光电平台的扰动得到有效补偿。该补偿控制方法具有较高的稳定精度和跟踪控制性能,满足多旋翼无人飞行器机载光电平台的稳定控制要求。
Abstract
In order to compensate disturbance and accomplish the stabilized tracking control for airborne plat-form mounted on multi-rotor unmanned aerial vehicle (MUAV), a self-adjusting tracking control method based on an improved disturbance observer (DOB) and radial basis function (RBF) neural network approximation is pro-posed. First, a compensated control is introduced into feedback loop in the structure of original disturbance ob-server, an improved disturbance observer is established based on velocity signals, and the ability of disturbance compensation and robustness are analyzed. Second, aiming at the compensation problem of nonlinear un-known disturbance, a method based on the RBF neural network (RBFNN) approximation properties is utilized. Finally, a composite compensation control structure is designed based on Lyapunov stability theory. The experi-mental results show that after applying the proposed method, the disturbance of airborne opto-electronic plat-form is compensated effectively. The proposed method has high precision and stable tracking control perfor-mance, and it can fully meet the requirement of airborne opto-electronic platform stability control.
参考文献

[1] 高文. 机载光电平台目标跟踪技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012.

    Gao Wen. Research on the target tracking application to photoelectricity platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012.

[2] Mei Y, Zhao H Y, Guo S Y. The analysis of image stabilization technology based on small-UAV airborne video[C]// Proceed-ings of 2012 IEEE International Conference on Computer Science and Electronics Engineering, 2012: 586–589.

[3] 邱宝梅, 万吉权, 王建文. 机载摄影稳定平台的自抗扰控制[J]. 光电工程, 2012, 39(4): 21–26.

    Qiu Baomei, Wan Jiquan, Wang Jianwen. Active disturbance rejection controller of the aerial photography stabilized plat-form[J]. Opto-Electronic Engineering, 2012, 39(4): 21–26.

[4] 王日俊. 多旋翼无人飞行器载荷稳像技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2015.

    Wang Rijun. Study on image stabilization technology for the payload of mUAV[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.

[5] Chen W H, Yang J, Guo L, et al. Disturbance-observer-based control and related methods: an overview[J]. IEEE Transac-tions on Industrial Electronics, 2016, 63(2): 1083–1095.

[6] 任彦, 刘正华, 周锐. 滑模干扰观测器在低速光电跟踪系统中的应用[J]. 北京航空航天大学学报, 2013, 39(6): 835–840.

    Ren Yan, Liu Zhenghua, Zhou Rui. Application of low speed opto-electronic tracking systems based on sliding mode dis-turbance observer[J]. Journal of Beijing University of Aero-nautics and Astronautics, 2013, 39(6): 835–840.

[7] Lee M H, Park H G, Lee W B, et al. On the design of a dis-turbance observer for moving target tracking of an autonomous surveillance robot[J]. International Journal of Control, Auto-mation and Systems, 2012, 10(1): 117–125.

[8] 李嘉全, 丁策, 孔德杰, 等. 基于速度信号的扰动观测器及在光电稳定平台的应用[J]. 光学 精密工程, 2011,19(5): 998–1004.

    Li Jiaquan, Ding Ce, Kong Dejie, et al. Velocity based dis-turbance observer and its application to photoelectric stabilized platform[J]. Optics and Precision Engineering, 2011, 19(5): 998–1004.

[9] 谢巍, 何忠亮. 采用改进型扰动观测器的控制方法[J]. 控制理论与应用, 2010, 27(6): 695–700.

    Xie Wei, He Zhongliang. Control method with improved dis-turbance observer[J]. Control Theory and Applications, 2010, 27(6): 695–700.

[10] 王日俊, 白越, 续志军, 等. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005–2012.

    Wang Rijun, Bai Yue, Xu Zhijun, et al. Fuzzy self-adjusting tracking control based on disturbance observer for airborne platform mounted on multi-rotor unmanned aerial vehicle[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10): 2005–2012.

[11] 朱海荣, 李奇, 顾菊平, 等. 扰动补偿的陀螺稳定平台单神经元自适应PI控制[J]. 电机与控制学报, 2012, 16(3): 65–70, 77.

    Zhu Hairong, Li Qi, Gu Juping, et al. Single-neuron adaptive PI control of the gyrostabilized platform based on disturbance compensation[J]. Electric Machines and Control, 2012, 16(3): 65–70, 77.

[12] Khalil H K. Nonlinear system[M]. 3rd edition. New Jersey: Prentice Hall, 2002: 24.

[13] 扈宏杰, 王元哲. 机载光电平台的复合补偿控制方法[J]. 光学 精密工程, 2012, 20(6): 1272–1281.

    Hu Hongjie, Wang Yuanzhe. Composite compensation control scheme for airborne opto-electronic platform[J]. Optics and Precision Engineering, 2012, 20(6): 1272–1281.

王日俊, 白越, 曾志强, 段能全, 杜文华, 王俊元. 多旋翼无人飞行器机载光电平台的复合补偿控制方法[J]. 光电工程, 2017, 44(10): 983. Rijun Wang, Yue Bai, Zhiqiang Zeng, Nengquan Duan, Wenhua Du, Junyuan Wang. Composite compensation control method for airborne opto-electronic platform mounted on multi-rotor UAV[J]. Opto-Electronic Engineering, 2017, 44(10): 983.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!