激光与光电子学进展, 2019, 56 (20): 202406, 网络出版: 2019-10-22   

金属等离子体微纳结构对有机光电器件光场调控的研究 下载: 2230次特邀综述

Metallic Plasmonic Micro/Nano-Structures for Light-Field Manipulation in Organic Optoelectronic Devices
毕宴钢 1,2易方顺 1,2冯晶 1,2,*
作者单位
1 集成光电子学国家重点实验室吉林大学实验区, 吉林 长春 130012
2 吉林大学电子科学与工程学院, 吉林 长春 130012
引用该论文

毕宴钢, 易方顺, 冯晶. 金属等离子体微纳结构对有机光电器件光场调控的研究[J]. 激光与光电子学进展, 2019, 56(20): 202406.

Yangang Bi, Fangshun Yi, Jing Feng. Metallic Plasmonic Micro/Nano-Structures for Light-Field Manipulation in Organic Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202406.

参考文献

[1] 林雯嫣, 喻叶, 彭雪康, 等. N掺杂改善黄色磷光有机电致发光器件的效率滚降[J]. 光学学报, 2019, 39(3): 0323001.

    Lin W Y, Yu Y, Peng X K, et al. Improvement of efficiency roll-off of yellow phosphorescent organic light-emitting devices by N-doping[J]. Acta Optica Sinica, 2019, 39(3): 0323001.

[2] Saxena K, Jain V K, Mehta D S. A review on the light extraction techniques in organic electroluminescent devices[J]. Optical Materials, 2009, 32(1): 221-233.

[3] Brütting W, Frischeisen J, Schmidt T D, et al. Device efficiency of organic light-emitting diodes: progress by improved light outcoupling[J]. Physica Status Solidi (a), 2013, 210(1): 44-65.

[4] Han J H, Moon J, Cho D H, et al. Luminescence enhancement of OLED lighting panels using a microlens array film[J]. Journal of Information Display, 2018, 19(4): 179-184.

[5] Möller S, Forrest S R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays[J]. Journal of Applied Physics, 2002, 91(5): 3324-3327.

[6] Lim J, Oh S S, Kim D Y, et al. Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array[J]. Optics Express, 2006, 14(14): 6564-6571.

[7] Li Y F, Li F, Zhang J H, et al. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces[J]. Applied Physics Letters, 2010, 96(15): 153305.

[8] Yamasaki T, Sumioka K, Tsutsui T. Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium[J]. Applied Physics Letters, 2000, 76(10): 1243-1245.

[9] Li F, Li X, Zhang J H, et al. Enhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals[J]. Organic Electronics, 2007, 8(5): 635-639.

[10] Chang H W, Lee J, Koh T W, et al. Bi-directional organic light-emitting diodes with nanoparticle-enhanced light outcoupling[J]. Laser & Photonics Reviews, 2013, 7(6): 1079-1087.

[11] Kim E, Cho H, Kim K, et al. A facile route to efficient, low-cost flexible organic light-emitting diodes: utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates[J]. Advanced Materials, 2015, 27(9): 1624-1631.

[12] Koh T W, Spechler J A, Lee K M, et al. Enhanced outcoupling in organic light-emitting diodes via a high-index contrast scattering layer[J]. ACS Photonics, 2015, 2(9): 1366-1372.

[13] Mladenovski S, Neyts K, Pavicic D, et al. Exceptionally efficient organic light emitting devices using high refractive index substrates[J]. Optics Express, 2009, 17(9): 7562-7570.

[14] Nakamura T, Fujii H, Juni N, et al. Enhanced coupling of light from organic electroluminescent device using diffusive particle dispersed high refractive index resin substrate[J]. Optical Review, 2006, 13(2): 104-110.

[15] Chang C H, Chang K Y, Lo Y J, et al. Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer[J]. Organic Electronics, 2012, 13(6): 1073-1080.

[16] Riedel D, Wehlus T. Reusch T C G, et al. Polymer-based scattering layers for internal light extraction from organic light emitting diodes[J]. Organic Electronics, 2016, 32: 27-33.

[17] Do Y R, Kim Y C, Song Y W, et al. Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals[J]. Advanced Materials, 2003, 15(14): 1214-1218.

[18] Kitamura M, Iwamoto S, Arakawa Y. Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals[J]. Japanese Journal of Applied Physics, 2005, 44(4S): 2844-2848.

[19] Koo W H, Youn W, Zhu P F, et al. Light extraction of organic light emitting diodes by defective hexagonal-close-packed array[J]. Advanced Functional Materials, 2012, 22(16): 3454-3459.

[20] Kim Y C, Do Y R. Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting[J]. Optics Express, 2005, 13(5): 1598-1603.

[21] Cho H J, Lee H N. OLED light outcoupling enhancement by extracting surface plasmon polariton energy[J]. Molecular Crystals and Liquid Crystals, 2014, 601(1): 159-164.

[22] Fuchs C, Will P A, Wieczorek M, et al. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses[J]. Physical Review B, 2015, 92(24): 245306.

[23] Shin J W, Cho D H, Moon J, et al. Random nano-structures as light extraction functionals for organic light-emitting diode applications[J]. Organic Electronics, 2014, 15(1): 196-202.

[24] Feng J, Liu Y F, Bi Y G, et al. Light manipulation in organic light-emitting devices by integrating micro/nano patterns[J]. Laser & Photonics Reviews, 2017, 11(2): 1600145.

[25] Ahn S, Rourke D, Park W. Plasmonic nanostructures for organic photovoltaic devices[J]. Journal of Optics, 2016, 18(3): 033001.

[26] Lim E L, Yap C C. Teridi M A M, et al. A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells[J]. Organic Electronics, 2016, 36: 12-28.

[27] Zhou N, López-Puente V, Wang Q, et al. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics[J]. RSC Advances, 2015, 5(37): 29076-29097.

[28] Haugeneder A, Neges M, Kallinger C, et al. Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures[J]. Physical Review B, 1999, 59(23): 15346-15351.

[29] Li W W, Hendriks K H. Roelofs W S C, et al. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films[J]. Advanced Materials, 2013, 25(23): 3182-3186.

[30] Li W T, Albrecht S, Yang L Q, et al. Mobility-controlled performance of thick solar cells based on fluorinated copolymers[J]. Journal of the American Chemical Society, 2014, 136(44): 15566-15576.

[31] Duché D, Drouard E, Simon J, et al. Light harvesting in organic solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(S1): S18-S25.

[32] Ko S J, Choi H, Lee W, et al. Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles[J]. Energy & Environmental Science, 2013, 6(6): 1949-1955.

[33] Feng L, Niu M S, Wen Z C, et al. Recent advances of plasmonic organic solar cells: photophysical investigations[J]. Polymers, 2018, 10(2): 123.

[34] Chuan F G, Sun T Y, Cao F, et al. Metallic nanostructures for light trapping in energy-harvesting devices[J]. Light: Science & Applications, 2014, 3(4): e161.

[35] Bi Y G, Feng J, Ji J H, et al. Nanostructures induced light harvesting enhancement in organic photovoltaics[J]. Nanophotonics, 2017, 7(2): 371-391.

[36] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[37] Koller D M, Hohenau A, Ditlbacher H, et al. Organic plasmon-emitting diode[J]. Nature Photonics, 2008, 2(11): 684-687.

[38] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[39] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science, 2004, 306(5698): 1002-1005.

[40] Yu H K, Peng Y S, Yang Y, et al. Plasmon-enhanced light-matter interactions and applications[J]. npj Computational Materials, 2019, 5: 45.

[41] Sreekanth K V, de Luca A, Strangi G. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings[J]. Scientific Reports, 2013, 3: 3291.

[42] 王丽, 万秀美, 高然, 等. 纳米多孔金膜表面等离子体共振传感器的制备与表征[J]. 光学学报, 2018, 38(2): 0228002.

    Wang L, Wan X M, Gao R, et al. Preparation and characterization of nanoporous gold film based surface plasmon resonance sensor[J]. Acta Optica Sinica, 2018, 38(2): 0228002.

[43] Hobson P A, Wedge S. Wasey J A E, et al. Surface plasmon mediated emission from organic light-emitting diodes[J]. Advanced Materials, 2002, 14(19): 1393-1396.

[44] Görrn P, Sander M, Meyer J, et al. Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes[J]. Advanced Materials, 2006, 18(6): 738-741.

[45] Gu G. Bulovi V, Burrows P E, et al. Transparent organic light emitting devices[J]. Applied Physics Letters, 1996, 68(19): 2606-2608.

[46] Meyer J, Winkler T, Hamwi S, et al. Transparent inverted organic light-emitting diodes with a tungsten oxide buffer layer[J]. Advanced Materials, 2008, 20(20): 3839-3843.

[47] Helander M G, Wang Z B, Greiner M T, et al. Oxidized gold thin films: an effective material for high-performance flexible organic optoelectronics[J]. Advanced Materials, 2009, 22(18): 2037-2040.

[48] Kuang P, Park J M, Leung W, et al. A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance[J]. Advanced Materials, 2011, 23(21): 2469-2473.

[49] Giannattasio A, Wedge S, Barnes W L. Role of surface profiles in surface plasmon-polariton-mediated emission of light through a thin metal film[J]. Journal of Modern Optics, 2006, 53(4): 429-436.

[50] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3/4): 131-314.

[51] Choi C S, Lee S M, Lim M S, et al. Improved light extraction efficiency in organic light emitting diodes with a perforated WO3 hole injection layer fabricated by use of colloidal lithography[J]. Optics Express, 2012, 20(S2): A309-A317.

[52] Hong K, Yu H K, Lee I, et al. Enhanced light out-coupling of organic light-emitting diodes: spontaneously formed nanofacet-structured MgO as a refractive index modulation layer[J]. Advanced Materials, 2010, 22(43): 4890-4894.

[53] Gifford D K, Hall D G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling[J]. Applied Physics Letters, 2002, 81(23): 4315-4317.

[54] Popov E K, Bonod N, Enoch S. Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings[J]. Optics Express, 2007, 15(7): 4224-4237.

[55] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

[56] Hägglund C, Apell S P. Plasmonic near-field absorbers for ultrathin solar cells[J]. The Journal of Physical Chemistry Letters, 2012, 3(10): 1275-1285.

[57] Green M A, Pillai S. Harnessing plasmonics for solar cells[J]. Nature Photonics, 2012, 6(3): 130-132.

[58] Ferry V E, Munday J N, Atwater H A. Design considerations for plasmonic photovoltaics[J]. Advanced Materials, 2010, 22(43): 4794-4808.

[59] Gan Q Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier[J]. Advanced Materials, 2013, 25(17): 2385-2396.

[60] Tang Z, Tress W, Inganäs O. Light trapping in thin film organic solar cells[J]. Materials Today, 2014, 17(8): 389-396.

[61] Spinelli P. Hebbink M, de Waele R, et al. Optical impedance matching using coupled plasmonic nanoparticle arrays[J]. Nano Letters, 2011, 11(4): 1760-1765.

[62] Schaadt D M, Feng B, Yu E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles[J]. Applied Physics Letters, 2005, 86(6): 063106.

[63] Stuart H R, Hall D G. Absorption enhancement in silicon-on-insulator waveguides using metal island films[J]. Applied Physics Letters, 1996, 69(16): 2327-2329.

[64] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19): 191113.

[65] Derkacs D, Lim S H, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles[J]. Applied Physics Letters, 2006, 89(9): 093103.

[66] Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells[J]. Journal of Applied Physics, 2007, 101(9): 093105.

[67] Shen H H, Bienstman P, Maes B. Plasmonic absorption enhancement in organic solar cells with thin active layers[J]. Journal of Applied Physics, 2009, 106(7): 073109.

[68] Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures[J]. Physical Review B, 2000, 61(15): 10484-10503.

[69] Dionne J A, Sweatlock L A, Atwater H A, et al. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model[J]. Physical Review B, 2005, 72(7): 075405.

[70] Slooff L H, Veenstra S C, Kroon J M, et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling[J]. Applied Physics Letters, 2007, 90(14): 143506.

[71] Abid M I, Wang L, Chen Q D, et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures[J]. Laser & Photonics Reviews, 2017, 11(2): 1600187.

[72] Wu D, Wu S Z, Zhao S, et al. Rapid, controllable fabrication of regular complex microarchitectures by capillary assembly of micropillars and their application in selectively trapping/releasing microparticles[J]. Small, 2013, 9(5): 760-767.

[73] Bai Y, Feng J, Liu Y F, et al. Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation[J]. Organic Electronics, 2011, 12(11): 1927-1935.

[74] Khang D Y, Yoon H, Lee H H. Room-temperature imprint lithography[J]. Advanced Materials, 2001, 13(10): 749-752.

[75] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.

[76] Chou S Y, Krauss P R, Zhang W, et al. Sub-10 nm imprint lithography and applications[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1997, 15(6): 2897-2904.

[77] MalaquinL,[\s]{1}CarcenacF,[\s]{1}VieuC,[\s]{1}et[\s]{1}al.[\s]{1}Using[\s]{1}polydimethylsiloxane[\s]{1}as[\s]{1}a[\s]{1}thermocurable[\s]{1}resist[\s]{1}for[\s]{1}a[\s]{1}soft[\s]{1}imprint[\s]{1}lithography[\s]{1}process[J].[\s]{1}Microelectronic[\s]{1}Engineering,[\s]{1}2002,[\s]{1}61/62:[\s]{1}379-[\s]{1}384.[\s]{1}

[78] Schift H. Nanoimprint lithography: an old story in modern times? A review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(2): 458-480.

[79] Chen Y F. Applications of nanoimprint lithography/hot embossing: a review[J]. Applied Physics A, 2015, 121(2): 451-465.

[80] Liao W C. Hsu S L C. A novel liquid thermal polymerization resist for nanoimprint lithography with low shrinkage and high flowability[J]. Nanotechnology, 2007, 18(6): 065303.

[81] Lu B R, Wan J, Shu Z, et al. Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8[J]. Microelectronic Engineering, 2009, 86(4/5/6): 619-621.

[82] Wang X D, Chen Y F, Banu S, et al. High density patterns fabricated in SU-8 by UV curing nanoimprint[J]. Microelectronic Engineering, 2007, 84: 872-876.

[83] Gröning P, Schneuwly A, Schlapbach L, et al. “Self-thickness-limited” plasma polymerization of an ultrathin antiadhesive film[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996, 14(6): 3043-3048.

[84] Okayasu T, Zhang H L, Bucknall D G, et al. Spontaneous formation of ordered lateral patterns in polymer thin-film structures[J]. Advanced Functional Materials, 2004, 14(11): 1081-1088.

[85] Koo W H, Jeong S M, Araoka F, et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles[J]. Nature Photonics, 2010, 4(4): 222-226.

[86] Li P, Chu P, Koltsov K, et al. Spontaneous formation of highly ordered nanostructures: thermal instability and mode selection in surface-capped polymer films[J]. Nanotechnology, 2008, 19(23): 235302.

[87] Sun Y K, Yi F S, Bi Y G, et al. Spontaneously formed random corrugations for efficient light extraction enhancement in flexible organic light-emitting devices[J]. Organic Electronics, 2019, 65: 91-95.

[88] Bowden N. Huck W T S, Paul K E, et al. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer[J]. Applied Physics Letters, 1999, 75(17): 2557-2559.

[89] Huck W T S, Bowden N, Onck P, et al. . Ordering of spontaneously formed buckles on planar surfaces[J]. Langmuir, 2000, 16(7): 3497-3501.

[90] Bowden N, Brittain S, Evans A G, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer[J]. Nature, 1998, 393(6681): 146-149.

[91] Chen X, Jia B H, Zhang Y N, et al. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets[J]. Light: Science & Applications, 2013, 2(8): e92.

[92] Lee J S, Cho J, Lee C, et al. Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties[J]. Nature Nanotechnology, 2007, 2(12): 790-795.

[93] 卢小香, 王勇, 韩晓媚, 等. 纳米图形增强OLED出光效率研究[J]. 激光与光电子学进展, 2018, 55(2): 022301.

    Lu X X, Wang Y, Han X M, et al. Study on light extraction efficiency of enhanced OLED with nanopatterns[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022301.

[94] Xu M, Feng J, Liu Y S, et al. Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles[J]. Applied Physics Letters, 2014, 105(15): 153303.

[95] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.

[96] Harada M, Asakura K, Toshima N. Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride[J]. The Journal of Physical Chemistry, 1993, 97(19): 5103-5114.

[97] Li Z Y, Wilcoxon J P, Yin F, et al. Structures and optical properties of 4-5 nm bimetallic AgAu nanoparticles[J]. Faraday Discuss, 2008, 138: 363-373.

[98] Mallik K, Mandal M, Pradhan N, et al. Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of “core-shell” type structures[J]. Nano Letters, 2001, 1(6): 319-322.

[99] Feng J, Okamoto T, Kawata S. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling[J]. Optics Letters, 2005, 30(17): 2302-2304.

[100] Rubin S, Fainman Y. Nonlocal and nonlinear surface plasmon polaritons and optical spatial solitons induced by the thermocapillary effect[J]. Physical Review Letters, 2018, 120(24): 243904.

[101] Gifford D K, Hall D G. Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling[J]. Applied Physics Letters, 2002, 80(20): 3679-3681.

[102] Matterson B J, Lupton J M, Safonov A F, et al. Increased efficiency and controlled light output from a microstructured light-emitting diode[J]. Advanced Materials, 2001, 13(2): 123-127.

[103] Jin Y, Feng J, Zhang X L, et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 2012, 24(9): 1187-1191.

[104] Bi Y G, Feng J, Li Y F, et al. Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure[J]. Applied Physics Letters, 2012, 100(5): 053304.

[105] Henson J. DiMaria J, Paiella R. Influence of nanoparticle height on plasmonic resonance wavelength and electromagnetic field enhancement in two-dimensional arrays[J]. Journal of Applied Physics, 2009, 106(9): 093111.

[106] Okamoto T, Shinotsuka K. Improvement of light extraction efficiency and reduction of driving voltage in organic light emitting diodes using a plasmonic crystal[J]. Applied Physics Letters, 2014, 104(9): 093301.

[107] Zhang X L, Song J F, Feng J, et al. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance[J]. Optics Letters, 2013, 38(21): 4382-4385.

[108] Worthing P T, Barnes W L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating[J]. Applied Physics Letters, 2001, 79(19): 3035-3037.

[109] Youn W, Lee J, Xu M F, et al. Corrugated sapphire substrates for organic light-emitting diode light extraction[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 8974-8978.

[110] Lee S M, Chae J S, Kim D Y, et al. Plasmonic nanomeshes as large-area, low-resistive transparent electrodes and their application to ITO-free organic light-emitting diodes[J]. Organic Electronics, 2014, 15(11): 3354-3361.

[111] Bi Y G, Feng J, Liu Y S, et al. Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation[J]. Scientific Reports, 2015, 4: 7108.

[112] Park J W, Lee G H, Kwon Y Y, et al. Enhancement in light extraction efficiency of organic light emitting diodes using double-layered transparent conducting oxide structure[J]. Organic Electronics, 2014, 15(10): 2178-2183.

[113] Kim J B, Lee J H, Moon C K, et al. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes[J]. Advanced Materials, 2013, 25(26): 3571-3577.

[114] Bi Y G, Feng J, Li Y F, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity[J]. Advanced Materials, 2013, 25(48): 6969-6974.

[115] Bocksrocker T, Hoffmann J, Eschenbaum C, et al. Micro-spherically textured organic light emitting diodes: a simple way towards highly increased light extraction[J]. Organic Electronics, 2013, 14(1): 396-401.

[116] Shin S J, Park T H, Choi J H, et al. Improvement of light out-coupling in organic light-emitting diodes by printed nanosized random texture layer[J]. Organic Electronics, 2013, 14(1): 187-192.

[117] Kim J Y, Kim W H, Kim D H, et al. Investigation of voltage reduction in nanostructure-embedded organic light-emitting diodes[J]. Organic Electronics, 2014, 15(1): 260-265.

[118] Moon J, Kim E, Park S K, et al. Organic wrinkles for energy efficient organic light emitting diodes[J]. Organic Electronics, 2015, 26: 273-278.

[119] Koo W H, Boo S, Jeong S M, et al. Controlling bucking structure by UV/ozone treatment for light extraction from organic light emitting diodes[J]. Organic Electronics, 2011, 12(7): 1177-1183.

[120] Kim J W, Jang J H, Oh M C, et al. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer[J]. Optics Express, 2014, 22(1): 498-507.

[121] Kim Y H, Lee J, Kim W M, et al. We want our photons back: simple nanostructures for white organic light-emitting diode outcoupling[J]. Advanced Functional Materials, 2014, 24(17): 2553-2559.

[122] Ji W, Zhao H F, Yang H G, et al. Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic light-emitting diodes[J]. Organic Electronics, 2015, 22: 154-159.

[123] Zhang D D, Wang R, Ma Y Y, et al. Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture[J]. Organic Electronics, 2014, 15(4): 961-967.

[124] Sung H, Lee J, Han K, et al. Controlled positioning of metal nanoparticles in an organic light-emitting device for enhanced quantum efficiency[J]. Organic Electronics, 2014, 15(2): 491-499.

[125] Kumar A, Srivastava R, Tyagi P, et al. Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon[J]. Organic Electronics, 2012, 13(1): 159-165.

[126] Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles[J]. Applied Physics Letters, 2012, 100(1): 013308.

[127] Riedel B, Hauss J, Geyer U, et al. Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers[J]. Applied Physics Letters, 2010, 96(24): 243302.

[128] Heo M, Cho H, Jung J W, et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance[J]. Advanced Materials, 2011, 23(47): 5689-5693.

[129] Deng L L, Zhou Z J, Yu T Y, et al. Investigation of the localized surface plasmon resonance of Ag@SiO2 core-shell nanocubes and its application in high-performance blue organic light-emitting diodes[J]. Nanotechnology, 2019, 30(38): 385205.

[130] Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562(7726): 249-253.

[131] Jordan R H, Dodabalapur A, Slusher R E. Efficiency enhancement of microcavity organic light emitting diodes[J]. Applied Physics Letters, 1996, 69(14): 1997-1999.

[132] Agrawal M, Sun Y R, Forrest S R, et al. Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors[J]. Applied Physics Letters, 2007, 90(24): 241112.

[133] Leem D S, Kim S Y, Lee J H, et al. High efficiency p-i-n top-emitting organic light-emitting diodes with a nearly Lambertian emission pattern[J]. Journal of Applied Physics, 2009, 106(6): 063114.

[134] Ji W, Zhang L T, Zhang T, et al. Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode[J]. Optics Letters, 2009, 34(18): 2703-2705.

[135] Schwab T, Schubert S, Müller-Meskamp L, et al. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes[J]. Advanced Optical Materials, 2013, 1(12): 921-925.

[136] Thomschke M, Nitsche R, Furno M, et al. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes[J]. Applied Physics Letters, 2009, 94(8): 083303.

[137] Wrzesniewski E, Eom S H, Cao W R, et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays[J]. Small, 2012, 8(17): 2647-2651.

[138] Yang C J, Liu S H, Hsieh H H, et al. Microcavity top-emitting organic light-emitting devices integrated with microlens arrays: simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution[J]. Applied Physics Letters, 2007, 91(25): 253508.

[139] Thomschke M, Reineke S, Lüssem B, et al. Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films[J]. Nano Letters, 2012, 12(1): 424-428.

[140] Zhang X L, Feng J, Han X C, et al. Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices[J]. Optica, 2015, 2(6): 579-584.

[141] Liu Y F, Feng J, Bi Y G, et al. Omnidirectional emission from top-emitting organic light-emitting devices with microstructured cavity[J]. Optics Letters, 2012, 37(2): 124-126.

[142] Liu Y F, Feng J, Yin D, et al. Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length[J]. Organic Electronics, 2013, 14(6): 1597-1601.

[143] Huh J W, Shin J W, Cho D H, et al. A randomly nano-structured scattering layer for transparent organic light emitting diodes[J]. Nanoscale, 2014, 6(18): 10727-10733.

[144] Freitag P, Reineke S, Olthof S, et al. White top-emitting organic light-emitting diodes with forward directed emission and high color quality[J]. Organic Electronics, 2010, 11(10): 1676-1682.

[145] Baba A, Aoki N, Shinbo K, et al. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 2080-2084.

[146] Khan I, Keshmiri H, Kolb F, et al. Multidiffractive broadband plasmonic absorber[J]. Advanced Optical Materials, 2016, 4(3): 435-443.

[147] Tumbleston J R, Gadisa A, Liu Y C, et al. Modifications in morphology resulting from nanoimprinting bulk heterojunction blends for light trapping organic solar cell designs[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8225-8230.

[148] Shahin S, Gangopadhyay P, Norwood R A. Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using Au nanoparticles[J]. Applied Physics Letters, 2012, 101(5): 053109.

[149] Li X H. Choy W C H, Lu H F, et al. Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles[J]. Advanced Functional Materials, 2013, 23(21): 2728-2735.

[150] Chen M C, Yang Y L, Chen S W, et al. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 511-517.

[151] Li X, Hu Y F, Deng Z B, et al. Efficiency improvement of polymer solar cells with random micro-nanostructured back electrode formed by active layer self-aggregation[J]. Organic Electronics, 2017, 41: 362-368.

[152] Reilly III T H, van de Lagemaat J, Tenent R C, et al. . Surface-plasmon enhanced transparent electrodes in organic photovoltaics[J]. Applied Physics Letters, 2008, 92(24): 243304.

[153] Ostfeld A E, Pacifici D. Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics[J]. Applied Physics Letters, 2011, 98(11): 113112.

[154] Lan W X, Cui Y X, Yang Q Y, et al. Broadband light absorption enhancement in moth's eye nanostructured organic solar cells[J]. AIP Advances, 2015, 5(5): 057164.

[155] Chen J D, Zhou L, Ou Q D, et al. Enhanced light harvesting in organic solar cells featuring a biomimetic active layer and a self-cleaning antireflective coating[J]. Advanced Energy Materials, 2014, 4(9): 1301777.

[156] Leem J W, Kim S, Park C, et al. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 6706-6715.

[157] Kim C, Shtein M, Forrest S R. Nanolithography based on patterned metal transfer and its application to organic electronic devices[J]. Applied Physics Letters, 2002, 80(21): 4051-4053.

[158] Lee S, In S, Mason D R, et al. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells[J]. Optics Express, 2013, 21(4): 4055-4060.

[159] Liu Y H, Madsen M, et al. . Flexible organic solar cells including efficiency enhancing grating structures[J]. Nanotechnology, 2013, 24(14): 145301.

[160] Aryal M, Trivedi K, Hu W. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography[J]. ACS Nano, 2009, 3(10): 3085-3090.

[161] Jin Y, Feng J, Zhang X L, et al. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode[J]. Applied Physics Letters, 2012, 101(16): 163303.

[162] Park S, Heo S W, Lee W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521.

[163] Chueh C C, Crump M. Jen A K Y. Optical enhancement via electrode designs for high-performance polymer solar cells[J]. Advanced Functional Materials, 2016, 26(3): 321-340.

[164] Bi Y G, Feng J, Chen Y, et al. Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells[J]. Organic Electronics, 2015, 27: 167-172.

[165] In S, Park N. Inverted ultrathin organic solar cells with a quasi-grating structure for efficient carrier collection and dip-less visible optical absorption[J]. Scientific Reports, 2016, 6: 21784.

[166] Zhou L, Ou Q D, Chen J D, et al. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures[J]. Scientific Reports, 2015, 4: 4040.

[167] Cho S, Kim K D, Heo J, et al. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells[J]. Scientific Reports, 2015, 4: 4306.

[168] Chen J D, Cui C, Li Y Q, et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency[J]. Advanced Materials, 2015, 27(6): 1035-1041.

[169] Fan G Q, Zhuo Q Q, Zhu J J, et al. Plasmonic-enhanced polymer solar cells incorporating solution-processable Au nanoparticle-adhered graphene oxide[J]. Journal of Materials Chemistry, 2012, 22(31): 15614-15619.

[170] Yang Y G, Feng S L, Li M, et al. Structure, optical absorption, and performance of organic solar cells improved by gold nanoparticles in buffer layers[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24430-24437.

[171] Karabchevsky A, Mosayyebi A, Kavokin A V. Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles[J]. Light: Science & Applications, 2016, 5(11): e16164.

[172] Liu C Y, Zhao C Y, Zhang X L, et al. Unique gold nanorods embedded active layer enabling strong plasmonic effect to improve the performance of polymer photovoltaic devices[J]. The Journal of Physical Chemistry C, 2016, 120(11): 6198-6205.

[173] Yao K, Xin X K, Chueh C C, et al. Enhanced light-harvesting by integrating synergetic microcavity and plasmonic effects for high-performance ITO-free flexible polymer solar cells[J]. Advanced Functional Materials, 2015, 25(4): 567-574.

[174] Liu H J, Goh W P, Leung M Y, et al. Effect of nanoparticle stabilizing ligands and ligand-capped gold nanoparticles in polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2012, 96: 302-306.

[175] Xue M, Li L. Tremolet de Villers B J, et al. Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles[J]. Applied Physics Letters, 2011, 98(25): 253302.

[176] Topp K, Borchert H, Johnen F, et al. Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3981-3989.

[177] Du P, Jing P T, Li D, et al. Plasmonic Ag@Oxide nanoprisms for enhanced performance of organic solar cells[J]. Small, 2015, 11(20): 2454-2462.

[178] Xie F X. Choy W C H, Wang C C D, et al. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers[J]. Applied Physics Letters, 2011, 99(15): 153304.

[179] Fung D D S, Qiao L F, Choy W C H, et al. . Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer[J]. Journal of Materials Chemistry, 2011, 21(41): 16349-16356.

[180] Segal-Peretz T, Sorias O, Moshonov M, et al. Plasmonic nanoparticle incorporation into inverted hybrid organic-inorganic solar cells[J]. Organic Electronics, 2015, 23: 144-150.

[181] Lin W K, Su S H, Ma C K, et al. Enhancing conversion efficiency of inverted organic solar cells using Ag nanoparticles and long wavelength absorbing tin (II) phthalocyanine[J]. Organic Electronics, 2016, 29: 94-98.

[182] Baek S W, Noh J, Lee C H, et al. Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method[J]. Scientific Reports, 2013, 3: 1726.

[183] Jung K, Song H J, Lee G, et al. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles[J]. ACS Nano, 2014, 8(3): 2590-2601.

[184] Baek S W, Park G, Noh J, et al. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells[J]. ACS Nano, 2014, 8(4): 3302-3312.

[185] Beck F J, Mokkapati S, Polman A, et al. Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells[J]. Applied Physics Letters, 2010, 96(3): 033113.

[186] Cheng P P, Ma G F, Li J, et al. Plasmonic backscattering enhancement for inverted polymer solar cells[J]. Journal of Materials Chemistry, 2012, 22(42): 22781-22787.

[187] Kakavelakis G, Vangelidis I, Heuer-Jungemann A, et al. Plasmonic backscattering effect in high-efficient organic photovoltaic devices[J]. Advanced Energy Materials, 2016, 6(2): 1501640.

[188] Gu Y, Zhang D D, Ou Q D, et al. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect[J]. Journal of Materials Chemistry C, 2013, 1(28): 4319-4326.

[189] Yates C J. Samuel I D W, Burn P L, et al. Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes[J]. Applied Physics Letters, 2006, 88(16): 161105.

[190] Li X H. Choy W C H, Huo L J, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells[J]. Advanced Materials, 2012, 24(22): 3046-3052.

[191] Li X H, Ren X G, Xie F X, et al. High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects[J]. Advanced Optical Materials, 2015, 3(9): 1220-1231.

[192] Lee Y H, Lee T K, Song I, et al. Boosting the performance of organic optoelectronic devices using multiple-patterned plasmonic nanostructures[J]. Advanced Materials, 2016, 28(25): 4976-4982.

毕宴钢, 易方顺, 冯晶. 金属等离子体微纳结构对有机光电器件光场调控的研究[J]. 激光与光电子学进展, 2019, 56(20): 202406. Yangang Bi, Fangshun Yi, Jing Feng. Metallic Plasmonic Micro/Nano-Structures for Light-Field Manipulation in Organic Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202406.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!