光子学报, 2017, 46 (6): 0616004, 网络出版: 2017-06-27  

基于石墨烯超材料表面等离子体激元共振的增强太赫兹调制

Enhanced Terahertz Modulation by Harvesting the Surface-plasmon-polariton Modes Based on Graphene Metamaterial
作者单位
西北大学 光子学与光子技术研究所, 西安 710069
摘要
基于表面等离子体共振原理,采用石墨烯超材料设计了开口环结构,用于调制太赫兹波.增加石墨烯的费米能级,改变开口环的开口距离,叠加多层石墨烯以增强石墨烯超材料的共振强度,进而增强太赫兹波调制,调制频率范围包括低频段和高频段.由于石墨烯费米能级的可调谐性,单层结构在高低两个频段的调制深度分别为81%和68%,多层结构在高低两个频段的调制深度分别增加到93%和95%,为动态调制提供了可能.该设计为调制器、吸收体等太赫兹器件的设计提供了指导和借鉴.
Abstract
Graphene-based Split Ring Resonator (SRR) metamaterial is proposed with capacity of modulating transmitted THz waves based on the principle of surface-plasmon-polariton.The resonant strengths of plasmonic modes can be significantly enhanced by increasing the Fermi level of graphene, changing the gap distance of SRR or by stacking graphene layers, thus high modulation depth is achieved in both higher frequency region and lower frequency region. Modulation depth of 81% and 68% are achieved in the two regions, which can be further enhanced to 93% and 95%,provides a dynamical modulation based on controllable Fermi level of graphene. This graphene-based design paves the way forthe design of THz applications, such as modulators and absorbers.
参考文献

[1] SUN Zhi-pei, MARTINEZ A,WANG Feng.Optical modulators with 2D layered materials[J].Nature Photonics,2016, 10(4): 227-238.

[2] SENSALE-RODRIGUEZ B,YAN Ru-sen, LIU Lei,et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 2013, 101(7): 1705-1716.

[3] FANG Zhe-yu, THONGRATTANASIRI S, SCHLATHER A, et al.Gated tunability and hybridization of localized plasmons in nanostructured graphene[J]. Acs Nano, 2013, 7(3): 2388-2395.

[4] LIU Ming, YIN Xiao-bo, ERICK U, et al.A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[5] JIANG Man, Qi Mei, REN Zhao-yu, et al.A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm[J]. Laser Physics Letters, 2013, 10(5): 79-83.

[6] SPIRITO D, COQUILLAT D, LOMBARDO A,et al.High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2013, 104(6): 061111.

[7] QIN Shi-qiao,ZHU Z H, GUO C C, et al. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons[J]. Applied Physics A Materials Science & Processing, 2014, 114(4): 1017-1021.

[8] WEIS P, REINHARD B, BRODYANSKI A,et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene.[J]. Acs Nano, 2012, 6(10): 9118-9124.

[9] SENSALE-RODRIGUEZ B,FANG Tian, YAN Ru-sen, et al.Unique prospects for graphene-based terahertz modulators[J]. Applied Physics Letters, 2011, 99(11): 113104.

[10] LI Jia-yuan, REN Zhao-yu, XU Xin-long et al.Graphene–metamaterial hybridization for enhanced terahertz response[J]. Carbon, 2014, 78(18): 102-112.

[11] SENSALE-RODRIGUEZ B, FANG Tian, YAN Ru-sen, et al.Broadband graphene terahertz modulators enabled by intraband transitions[J].Nature Communications, 2012, 3(1): 85-100.

[12] LIU Na, HARALD G. Coupling effects in optical metamaterials[J]. Angewandte Chemie International Edition, 2010, 49(51): 9838-9852.

[13] BERARDI S R, RAFIQUE S, YAN Ru-sen, et al. Terahertz imaging employing graphene modulator arrays[J]. Optics Express, 2013, 21(2): 2324-2330.

[14] ANDRYIEUSKI A, LAVRINENKOA.V.Graphenemetamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 2013, 21(7): 9144-9155.

[15] ALAEE R, MOHAMED F, CARSTEN R, et al.A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express, 2012, 20(27): 28017-28024.

[16] FREITAG M, TONY L, ZHU Wen-juan,et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons[J]. Nature Communications, 2013, 4(3): 131-140.

[17] LEE S H, LIU Ming, ZHANG Xiang, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11(11): 936-941.

[18] HAN Jian-guang, ZHANG Wei-li,GU Jian-qiang, et al.Broadband resonant terahertz transmission in a composite metal-dielectric structure[J]. Optics Express, 2009, 17(19): 16527-16534.

[19] ENKRICH C, WEGENER M, LINDENS, et al. Magnetic metamaterials at telecommunication and visible frequencies[J]. Physical Review Letters, 2005, 95(20): 1168-1174.

[20] PADILLA W J, TAYLOR A J, HIGHSTRETE C,et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Conference on Lasers & Electro-optics, 2008, 96(10): 1-2.

[21] SERSIC I, FRIMMER M, VERHAGEN E,et al. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays[J]. Physical Review Letters, 2009, 103(21): 213902

[22] CORRIGAN T D, KOLB P W, SUSHKOVA.B, et al. Optical plasmonic resonances in split-ring resonator structures: An improved LC model[J]. Optics Express, 2008, 16(24): 19850-19864.

[23] YAN Hu-gen, XIA Feng-nian, CHANDRAB, et al.Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

[24] YAO Ze-han, HUANG Yuan-yuan, WANG Qian, et al. Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region[J]. Computational Materials Science, 2015, 117: 544-548.

王梦奇, 孙丹丹, 任兆玉. 基于石墨烯超材料表面等离子体激元共振的增强太赫兹调制[J]. 光子学报, 2017, 46(6): 0616004. WANG Meng-qi, SUN Dan-dan, REN Zhao-yu. Enhanced Terahertz Modulation by Harvesting the Surface-plasmon-polariton Modes Based on Graphene Metamaterial[J]. ACTA PHOTONICA SINICA, 2017, 46(6): 0616004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!