中国激光, 2017, 44 (12): 1206002, 网络出版: 2017-12-11   

基于马赫-曾德尔干涉仪的超短光脉冲合成系统

Ultrashort Optical Pulse Synthesis System Based on Mach-Zehnder Interferometer
作者单位
1 北方工业大学电子信息工程学院, 北京 100144
2 北方工业大学计算机学院, 北京 100144
摘要
基于传输矩阵法对马赫-曾德尔干涉仪的输出特性进行分析, 结果表明, 当干涉臂臂长差为中心波长与有效折射率比值的整数倍时,马赫-曾德尔干涉仪具有微分特性, 且微分阶数与级联的干涉仪数目成正比。根据信号系统理论知识, 利用马赫-曾德尔干涉仪的微分特性, 设计出基于马赫-曾德尔干涉仪的超短光脉冲合成系统, 并通过调节输入高斯脉冲及其各阶微分的加权系数, 将输入的高斯脉冲分别合成为平顶脉冲、三角脉冲以及抛物线型脉冲。改变高斯脉冲各阶微分加权系数与输入脉冲宽度发现, 输出脉冲波形基本保持不变, 系统的稳定性良好。
Abstract
Based on transfer matrix method, the output characteristics of Mach-Zehnder interferometer are analyzed. Results show that Mach-Zehnder interferometer has differential characteristics when difference of two interference arms′ length is an integer multiple of the ratio of the center wavelength to the effective refractive index, and the differential order is proportional to the number of cascaded interferometers. Based on signal system theory and the differential characteristic of Mach-Zehnder interferometer, the ultrashort optical pulse synthesis system based on Mach-Zehnder interferometer is designed. By adjustment of the weighting coefficients of input Gaussian pulse and its differential order, input Gaussian pulses are synthesized into flattened pulse, triangular pulse and parabolic pulse, respectively. When the weighting coefficients and input width of Gaussian pulse are changed, the output pulse waveform is basically invariable, which proves the system has good stability.
参考文献

[1] Parmigiani F, Petropoulos P, Ibsen M, et al. All-optical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating[J]. Journal of Lightwave Technology, 2006, 24(1): 357-364.

[2] Parmigiani F, Finot C, Mukasa K, et al. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating[J]. Optics Express, 2006,14(17): 7617-7622.

[3] 褚赛赛, 李洪云, 王树峰, 等. 激光脉冲整形在微纳光学系统中的应用研究进展[J]. 光学学报, 2016, 36(10): 1026007.

    Chu Saisai, Li Hongyun, Wang Shufeng, et al. Development of ultrashort laser pulse shaping technique and its applications in micro- and nano-optical systems[J]. Acta Optica Sinica, 2016, 36(10):1026007.

[4] Weiner A M. Ultrafast optical pulse shaping: A tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692.

[5] 裴卓然, 刘军. 基于平行相位调制算法的频谱相位测量和补偿[J]. 中国激光, 2016, 43(9): 0901001.

    Pei Zhuoran, Liu Jun. Parallel phase modulation algorithm based spectral phase measurement and compensation[J]. Chinese J Lasers, 2016, 43(9): 0901001.

[6] Park Y, Asghari M H, Ahn T J, et al. Transform-limited picosecond pulse shaping based on temporal coherence synthesization[J]. Optics Express, 2007, 15(15): 9584-9599.

[7] Slavík R, Kulishov M, Park Y, et al. Long-period-fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics[J]. Optics Letters, 2009, 34(7): 1045-1047.

[8] Park Y, Kulishov M, Slavík R, et al. Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings[J]. Optics Express,2006, 14(26): 12670-12678.

[9] Zhang A, Li C. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays[J].Optics Express, 2012, 20(21): 23074-23081.

[10] Xie Y, Zhuang L, Zhu C, et al. Nyquist pulse shaping using arrayed waveguide grating routers[J]. Optics Express, 2016, 24(20): 22357-22365.

[11] Liao S, Ding Y, Dong J, et al. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper[J]. Optics Express, 2015, 23(9): 12161-12173.

[12] Asghari M H, Azaa J. Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators[J]. Optics Communications, 2008, 281(18): 4581-4588.

[13] Dong J, Zheng A, Gao D, et al. High-order photonic differentiator employing on-chip cascaded microring resonators[J]. Optics Letters, 2013, 38(5): 628-630.

[14] Oxenlowe L K, Slavik R, Galili M, et al. 640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 566-572.

[15] 张岩, 裴丽, 王一群, 等. 基于啁啾FBG的三角形光脉冲发生器的优化设计[J]. 红外与激光工程, 2015, 44(4): 1306-1310.

    Zhang Yan, Pei Li, Wang Yiqun, et al. Optimization of optical triangular pulses generator based on chirped fiber Bragg grating[J]. Infrared and Laser Engineering, 2015, 44(4): 1306-1310.

[16] Huh J, Azaa J. Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping[J]. Optics Express, 2015, 23(21): 27751-27762.

董小伟, 许梦真, 刘文楷. 基于马赫-曾德尔干涉仪的超短光脉冲合成系统[J]. 中国激光, 2017, 44(12): 1206002. Dong Xiaowei, Xu Mengzhen, Liu Wenkai. Ultrashort Optical Pulse Synthesis System Based on Mach-Zehnder Interferometer[J]. Chinese Journal of Lasers, 2017, 44(12): 1206002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!