光通信研究, 2019 (1): 9, 网络出版: 2019-05-04   

集成光开关发展现状及关键技术(特邀)

Development Status and Key Technologies of Integrated Optical Switches
作者单位
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
引用该论文

周林杰, 陆梁军, 郭展志, 赵硕义, 李祖湘, 高伟, 李鑫, 陈建平. 集成光开关发展现状及关键技术(特邀)[J]. 光通信研究, 2019, 45(1): 9.

ZHOU Lin-jie, LU Liang-jun, GUO Zhan-zhi, ZHAO Shuo-yi, LI Zu-xiang, GAO Wei, LI Xin, CHEN Jian-ping. Development Status and Key Technologies of Integrated Optical Switches[J]. Study On Optical Communications, 2019, 45(1): 9.

参考文献

[1] Cisco Systems, Inc. Cisco Visual Networking Index [EB/OL]. (2017-03-28)[2018-10-15]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.

[2] Sato K.Realization and Application of Large-Scale Fast Optical Circuit Switch for Data Center Networking[J].Journal of Lightwave Technology,2018,36(7):1411-1419.

[3] Ganbold M E, Nagai H, Mori Y, et al. A Large-Scale Optical Circuit Switch Using Fast Wavelength-Tunable and Bandwidth-Variable Filters[J]. IEEE Photonics Technology Letters, 2018,30(16): 1439-1442.

[4] Dobbelaere P D, Falta K, Gloeckner S, et al. Digital MEMS for Optical Switching[J]. IEEE Communications Magazine, 2002, 40(3):88-95.

[5] Mizukami M, Yamaguchi J, Nemoto N, et al. 128× 128 Three-Dimensional MEMS Optical Switch Module with Simultaneous Optical Path Connection for Optical Cross-Connect Systems[J]. Applied Optics, 2011,50(21): 4037-4041.

[6] Kim J, Nuzman C J, Kumar B, et al. 1100× 1100 Port MEMS-based Optical Crossconnect with 4-dB Maximum Loss[J]. IEEE Photonics Technology Letters, 2003, 15(11):1537-1539.

[7] Duthie P J, Wale M J. 16*16 Single Chip Optical Switch Array in Lithium Niobate[J].Electronics Letters, 1991, 27(14): 1265-1266.

[8] Watson J E, Milbrodt M A, Bahadori K, et al. A Low-Voltage 8*8 Ti:LiNbO/sub 3/ Switch with a Dilated-Benes Architecture[J]. Journal of Lightwave Technology, 1990, 8(5):794-801.

[9] Sun Y, Cao Y, Wang Q, et al. Polymer Thermal Optical Switch for a Flexible Photonic Circuit[J]. Applied Optics, 2018, 57(1):14-17.

[10] Liang L, Zhang K, Zheng C T, et al. N×N Reconfigurable Nonblocking Polymer/Silica Hybrid Planar Optical Switch Matrix based on Total-Internal-Reflection Effect[J].IEEE Photonics Journal, 2017,9(4):1-11.

[11] Hibino Y, Hanawa F, Nakagome H, et al.High Reliability Optical Splitters Composed of Silica-based Planar Lightwave Circuits[J].Journal of Lightwave Technology, 1995,13(8): 1728-1735.

[12] Watanabe T, Goh T, Okuno M, et al. Silica-based PLC 1×128 Thermo-Optic Switch[C]// European Conference on Optical Communication. Amsterdam,Holland:IEEE, 2001,2:134-135.

[13] Miya T. Silica-based Planar Lightwave Circuits: Passive and Thermally Active Devices[J].IEEE Journal of Selected Topics in Quantum Electronics, 2000,6(1): 38-45.

[14] Goh T, Yasu N, Hattori K, et al.Low-Loss and High-Extinction-Ratio Silica-based Strictly Nonblocking 16×16 Thermooptic Matrix Switch[J].IEEE Photonics Technology Letters, 1998, 10(6): 810-812.

[15] Sakamakia Y, Sohma S, Saida T, et al. Loss Reduction of Silica-based 8× 8 Optical Matrix Switch by Optimizing Waveguide Crossings using WFM Method[J]. Ieice Electronics Express, 2007, 4(23): 712-716.

[16] Sohma S, Watanabe T, Ooba N, et al. Silica-based PLC Type 32 × 32 Optical Matrix Switch[C]//European Conference on Optical Communications. Cannes, France: IEEE, 2006:1-2.

[17] Shibata T, Okuno M, Goh T, et al. Silica-based Waveguide-type 16 × 16 Optical Switch Module Incorporating Driving Circuits[J]. IEEE Photonics Technology Letters, 2003, 15(9):1300-1302.

[18] Sohma S, Goh T, Okazaki H, et al. Low Switching Power Silica-based Super High Delta Thermo-Optic Switch with Heat Insulating Grooves[J]. Electronics Letters, 2002, 38(3):127-128.

[19] Goh T, Yasu M, Kattori K, et al. Low Loss and High Extinction Ratio Strictly Nonblocking 16× 16 Thermooptic Matrix Switch on 6-in Wafer Using Silica-based Planar Lightwave Circuit Technology[J].Journal of Lightwave Technology, 2001,19(3): 371-379.

[20] Sohma S, Mino S, Watanabe T, et al. Solid-State Optical Switches Using Planar Lightwave Circuit and IC-on-PLC Technologies[C]// Asia-Pacific Optical Communications 2004. Beijing, China: Optical Transmission, Switching, and Subsystem II, Pts 1 and 2, 2004,5625 :767-775.

[21] Takahashi M, Uchida Y, Yamasaki S, et al. Compact and Low-Loss Coherent Mixer based on High Delta ZrO2-SiO2 PLC[J].Journal of Lightwave Technology, 2014,32(17): 3081-3088.

[22] Uchida Y, Yamasaki S, Takahashi M, et al. Ultra-Compact 8-Arrayed 8× 1 Switch Consists of ZrO2-SiO2-based High Delta PLC[C]//Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA:IEEE, 2015: W2A.11.

[23] Takahashi M, Yamasaki S, Hasegawa J. Switching Devices and Systems Enabled by Advanced Planar Lightwave Circuits[C]//Optical Fiber Communications Conference and Exhibition. San Diego,CA,USA: IEEE, 2017:WAE.6.

[24] Takahashi M, Yamasaki S, Uchida Y. et al. Compact and Low-Loss ZrO2-SiO2 PLC-based 8× 8 Multicast Switch for CDC-ROADM Application[J]. Journal of Lightwave Technology, 2016,34(8): 1712-1716.

[25] Ding M, Wonfor A, Cheng Q, et al. Hybrid MZI-SOA InGaAs/InP Photonic Integrated Switches[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, pp(99):1.

[26] Stabile R, Alboresmejia A, Rohit A, et al. Integrated Optical Switch Matrices for Packet Data Networks[J]. Microsystems & Nanoengineering, 2016, 2:15042.

[27] Cheng Q X, Wonfor A, Wei J L, et al. Demonstration of the Feasibility of Large-Port-Count Optical Switching Using a Hybrid Mach-Zehnder Interferometer-Semiconductor Optical Amplifier Switch Module in a Recirculating Loop[J].Optics Letters,2014,39(18):5244-5247.

[28] Cheng Q X, Wonfor A, Penty R V, et al.Low-Energy Hybrid Photonic Space Switch[J]. Journal of Lightwave Technology, 2013,31(18): 3077-3084.

[29] Stabile R, Albores-Mejia A, Williams K A. Monolithic Active-Passive 16× 16 Optoelectronic Switch[J].Optics Letters, 2012,37(22): 4666-4668.

[30] Wonfor A,Wang H,Penty R V,et al.White,Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited][J]. Journal of Optical Communications and Networking,2011,3(8):A32-A39.

[31] Stabile R, Dasmahapatra P, Williams K A. 4×4 InP Switch Matrix with Electro-Optically Actuated Higher Order Micro-Ring Resonators[J].IEEE Photonics Technology Letters, 2016,28(24): 2874-2877.

[32] Nicholes S C, Masanovic M L, Jevremovic B, et al.An 8×8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip[J].Journal of Lightwave Technology, 2010,28(4): 641-650.

[33] Zhou L, Wang X, Lu L, et al. Integrated Optical Delay Lines: A Review and Perspective [Invited][J]. Chinese Optics Letters, 2018,16(10): 101301.

[34] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose Silicon Photonics Signal Processor Core[J]. Nature Communications, 2017, 8(1):636.

[35] Burla M, Wang X, Li M, et al. Wideband Dynamic Microwave Frequency Identification System Using a Low-Power Ultracompact Silicon Photonic Chip[J]. Nature Communications, 2016, 7(1):13004.

[36] Rickman A. The Commercialization of Silicon Photonics[J].Nature Photonics, 2014,8(8): 579-582.

[37] Sherwood D N,Wang H,Chen L,et al.Optical 4×4 Hitless Silicon Router for Optical Networks-on-Chip (NoC)[J].Optics Express,2008,16(20):15915-15922.

[38] Nikolova D, Calhoun D M, Liu Y, et al. A Highly Scalable Fully Non-Blocking Silicon Photonic Switch Fabric[J]. arXiv Optics,2005(12):1512.09323.

[39] Gazman A, Browning C, Bahadori M, et al. Software-Defined Control-Plane for Wavelength Selective Unicast and Multicast of Optical Data in a Silicon Photonic Platform[J]. Optics Express, 2017, 25(1):232-242.

[40] Vujicic V, Anthur A P, Gazman A, et al. Software-Defined Silicon Photonics based Metro Node for Flexible Superchannel Switching[J]. IEEE/OSA Journal of Optical Communications & Networking, 2016, 9(5):342-350.

[41] Lee B G,Rylyakov A V,Green W M J,et al.Monolithic Silicon Integration of Scaled Photonic Switch Fabrics,CMOS Logic,and Device Driver Circuits[J].Journal of Lightwave Technology,2014,32(4):743-751.

[42] Rylyakov A V, Lee B G, Baks C W, et al. Design and Fabrication of Low-Insertion-Loss and Low-Crosstalk Broadband 2×2 Mach-Zehnder Silicon Photonic Switches[J].Journal of Lightwave Technology,2015,33(17):3597-3606.

[43] Dupuis N, Lee B G, Rylyakov A V, et al. Modeling and Characterization of a Nonblocking 4×4 Mach-Zehnder Silicon Photonic Switch Fabric[J]. Journal of Lightwave Technology, 2015, 33(20):4329-4337.

[44] Han S, Seok T J , Quack N, et al.Large-Scale Silicon Photonic Switches with Movable Directional Couplers[J].Optica, 2015,2(4): 370-375.

[45] Seok T J, Quack N, Han S, et al.Large-Scale Broadband Digital Silicon Photonic Switches with Vertical Adiabatic Couplers[J]. Optica, 2016,3(1): 64-70.

[46] Suzuki K, Tanizawa K, Matsukawa T, et al. Ultra-Compact 8×8 Strictly-Non-Blocking Si-Wire PILOSS Switch[J]. Optics Express, 2014, 22(4):3887-3894.

[47] Tanizawa K, Suzuki K, Toyama M, et al. Ultra-Compact 32 × 32 Strictly-Non-Blocking Si-Wire Optical Switch with Fan-Out LGA Interposer[J]. Optics Express, 2015, 23(13):17599.

[48] Qiao L, Tang W, Chu T. Non-Blocking 8×8 Silicon Electro-Optic Switch[C]// Lasers and Electro-Optics Pacific Rim. Busan, South Korea: IEEE, 2015:1-2.

[49] Qiao L, Tang W, Chu T. 16×16 Non-Blocking Silicon Electro-Optic Switch based on Mach-Zehnder Interferometers[C]// Optical Fiber Communications Conference and Exhibition, Anaheim. CA, USA: IEEE, 2016:Th1C.2.

[50] Qiao L, Tang W J, Chu T. 32× 32 Silicon Electro-Optic Switch with Built-in Monitors and Balanced-Status Units[J]. Scientific Reports, 2017, 7:42306.

[51] Ji R, Xu J, Yang L. Five-Port Optical Router based on Microring Switches for Photonic Networks-on-Chip[J].IEEE Photonics Technology Letters, 2013, 25(5): 492-495.

[52] Ji R. Five-Port Optical Router for Photonic Networks-on-Chip[J]. Optics Express, 2011,19(21): 20258-20268.

[53] Xia Y, Yang L, Zhang F, et al. Reconfigurable Non-Blocking 4-Port Silicon Thermo-Optic Optical Router based on Mach-Zehnder Optical Switches[J].Optics Letters, 2015,40(7):1402-1405.

[54] Yang L,Jia H,Zhao Y,et al.Reconfigurable Non-Blocking Four-Port Optical Router based on Microring Resonators[J].Optics Letters,2015,40(6):1129-1132.

[55] Guo Z, Lu L, Zhou L, et al. 16×16 Silicon Optical Switch based on Dual-Ring Assisted Mach-Zehnder Interferometers[J]. Journal of Lightwave Technology, 2018, 36(99):225-232.

[56] Liao M, Wu B, Huang W, et al. Synchronous Driving Scheme for Silicon-based Optical Switches to Critically Compensate for Thermo-Optic Effect in Carrier Injection[J]. Applied Optics, 2017, 56(2):205-210.

[57] Zhao S, Lu L, Zhou L, et al. 16 × 16 Silicon Mach-Zehnder Interferometer Switch Actuated with Waveguide Microheaters[J].Photonics Research,2016,4(5):202-207.

[58] Lu L, Zhao S, Zhou L, et al. 16 ×16 Non-Blocking Silicon Optical Switch based on Electro-Optic Mach-Zehnder Interferometers[J].Optics Express,2016,24(9):9295-9307.

[59] Li Z, Zhou L, Lu L, et al. 4×4 Nonblocking Optical Switch Fabric based on Cascaded Multimode Interferometers[J]. Photonics Research, 2016,4(1): 21-26.

[60] Zhou L, Soref R, Chen J. Wavelength-Selective Switching Using Double-Ring Resonators Coupled by a Three-Waveguide Directional Coupler[J]. Optics Express, 2015, 23(10):13488-13498.

[61] Lu L, Zhou L, Li Z, et al. Broadband 4×4 Nonblocking Silicon Electrooptic Switches based on Mach-Zehnder Interferometers[J]. IEEE Photonics Journal, 2015, 7(1):1-8.

[62] Lu L J, Zhou L J, Li Z X, et al. 4×4 Silicon Optical Switch based on Double-Ring Assisted Mach-Zehnder Interferometers[J].IEEE Photonics Technology Letters 2015,27(23): 2457-2460.

[63] Lu L, Zhou L, Li S, et al. 4 × 4 Nonblocking Silicon Thermo-Optic Switches based on Multimode Interferometers[J]. Journal of Lightwave Technology, 2015, 33(4):857-864.

[64] Lu L, Zhou L,Li X W, et al. Low-Power 2×2 Silicon Electro-Optic Switches based on Double-Ring Assisted Mach-Zehnder Interferometers[J]. Optics Letters, 2014, 39(6):1633-1636.

[65] Liao M, Wu B, Huang W, et al. Synchronous Driving Scheme for Silicon-based Optical Switches to Critically Compensate for Thermo-Optic Effect in Carrier Injection[J]. Applied Optics, 2017, 56(2):205-210.

[66] Li Y, Poon A W. Actively Stabilized Silicon Microrings with Integrated Surface-State-Absorption Photodetectors Using a Slope-Detection Method[J]. Optics Express, 2016, 24(19):21286-21300.

[67] Padmaraju K, Logan D F, Shiraishi T, et al. Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals[J]. Journal of Lightwave Technology, 2014, 32(3):505-512.

[68] Li D, Zhou L, Lu L, et al. Optical Power Monitoring with Ultrahigh Sensitivity in Silicon Waveguides and Ring Resonators[J].IEEE Photonics Journal,2017,9(5):1-10.

[69] Celo D, Goodwill D J, Jiang J, et al. 32×32 Silicon Photonic Switch[C]//Optoelectronics and Communications Conference. Niigata, Japan:IEEE,2016:1-3.

[70] Li G, Yao J, Thacker H, et al. Ultralow-Loss, High-Density SOI Optical Waveguide Routing for Macrochip Interconnects[J]. Optics Express, 2012, 20(11): 12035-12039.

[71] Zou Z, Zhou L, Li X, et al. 60-nm-Thick Basic Photonic Components and Bragg Gratings on the Silicon-on-Insulator Platform[J].Optics Express,2015,23(16):20784-20795.

[72] Krishnamoorthy A V, Kung C C, Feng D Z, et al. Low Loss Shallow-Ridge Silicon Waveguides[J]. Optics Express, 2010, 18(14):14474-14479.

[73] Van C J, Green W M, Assefa S,et al. Low-Power,2×2 Silicon Electro-Optic Switch with 110-nm Bandwidth for Broadband Reconfigurable Optical Networks[J]. Optics Express, 2009, 17(26):24020-24029.

[74] Dupuis N, Rylyakov A V, Schow C L, et al. Ultralow Crosstalk Nanosecond-Scale Nested 2 × 2 Mach-Zehnder Silicon Photonic Switch[J]. Optics Letters, 2016, 41(13):3002-3005.

[75] Suzuki K,Cong G,Tanizawa K,et al.Ultra-High Extinction-Ratio 2×2 Silicon Optical Switch with Variable Splitter[J].Optics Express,2015,23(7):9086-9092.

[76] Goh T, Himeno A, Okuno M, et al. High-Extinction Ratio and Low-Loss Silica-based 8×8 Strictly Nonblocking Thermooptic Matrix Switch[J]. Journal of Lightwave Technology,1999,17(7): 1192-1199.

[77] Suzuki K, Tanizawa K, Suda S, et al. Broadband Silicon Photonics 8 × 8 Switch based on Double-Mach-Zehnder Element Switches[J].Optics Express,2017,25(7):7538-7546.

[78] Zhou L, Zhu H, Zhang H, et al. Photoconductive Effect on P-I-P Micro-Heaters Integrated in Silicon Microring Resonators[J]. Optics Express, 2014, 22(2):2141-2149.

[79] Xie J,Zhou L,Zou Z,et al.Continuously Tunable Reflective-Type Optical Delay Lines Using Microring Resonators[J].Optics Express,2014,22(1):817-823.

[80] Zhou L, Zhang X, Lu L, et al. Tunable Vernier Microring Optical Filters with P-I-P Type Microheaters[J]. IEEE Photonics Journal, 2013, 5(4):6601211.

[81] Spanke R. Architectures for Guided-Wave Optical Space Switching Systems[J]. IEEE Communications Magazine, 1987, 25(5):42-48.

[82] Padmanabhan K, Netravali A. Dilated Networks for Photonic Switching[J]. IEEE Transactions on Communications, 1987, 35(12):1357-1365.

[83] Lu E, Zheng S Q. Fast Reconfiguration Algorithms for Time, Space, and Wavelength Dilated Optical Benes Networks[J]. Parallel Algorithms & Applications, 2007, 22(1):39-58.

[84] Guo Z, Lu L, Zhao S, et al. Strictly Non-Blocking 4×4 Silicon Electro-Optic Switch based on A Double Layer Network Architecture[C]// International Conference on Group IV Photonics. Shanghai, China: IEEE, 2016:68-69.

[85] Nakamura S, Takahashi S, Ogura I, et al. High Extinction Ratio Optical Switching Independently of Temperature with Silicon Photonic 1×8 Switch[C]// Optical Fiber Communication Conference and Exposition. Los Angeles, CA,USA: IEEE, 2012:955-967.

[86] Sugiyama K, Chiba T, Tanizawa K, et al. Polarization Diversity Circuit based on Silica Waveguides and Photonic Crystal Waveplates for A 4×4 Silicon Optical Switch[J]. Ieice Electronics Express, 2017, 14(10):14.

[87] Tanizawa K, Suzuki K, Ikeda K, et al. Novel Polarization Diversity without Switch Duplication of A Si-Wire PILOSS Optical Switch[J].Optics Express,2016,24(7):6861-6868.

[88] Sacher W D, Barwicz T, Taylor B J F, et al. Polarization Rotator-Splitters in Standard Active Silicon Photonics Platforms[J]. Optics Express, 2014, 22(4):3777-3786.

[89] Annoni A, Guglielmi E, Carminati M, et al. Automated Routing and Control of Silicon Photonic Switch Fabrics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6):1-8.

[90] Grillanda S, Morichetti F, Peserico N, et al. Non-Invasive Monitoring of Mode-Division Multiplexed Channels on a Silicon Photonic Chip[J]. Journal of Lightwave Technology, 2015, 33(6):1197-1201.

[91] Snyder B, O'Brien P. Packaging Process for Grating-Coupled Silicon Photonic Waveguides Using Angle-Polished Fibers[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2013, 3(6):954-959.

[92] Li C, Chee K S, Tao J, et al. Silicon Photonics Packaging with Lateral Fiber Coupling to Apodized Grating Coupler Embedded Circuit[J]. Optics Express, 2014, 22(20):24235-24240.

[93] Pavarelli N, Lee J S, O'Brien P A. Packaging Challenges for Integrated Silicon Photonic Circuits[C]//SPIE Photonics Europe.Montreal, Canada:IEEE, 2014,9133(7):1187-1190.

[94] Dan N, Luo J, Henriksson J, et al. High Density Optical Packaging of High Radix Silicon Photonic Switches[C]// Optical Fiber Communications Conference and Exhibition. Anaheim, CA,USA:IEEE, 2017:Th5D.7.

[95] Suzuki K, Konoike R, Hasegawa J, et al. Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch with Extremely High-Δ Silica PLC Connector[J].Journal of Lightwave Technology,2018,36(16):1.

[96] Suzuki K,Konoike R,Hasegawa J,et al.Low Insertion Loss and Power Efficient 32× 32 Silicon Photonics Switch with Extremely-High-Delta PLC Connector[C]//Optical Fiber Communications Conference and Exposition.San Diego,CA,USA:IEEE,2018:Th4B.5.

[97] Cong G W, Matsukawa T, Suzuki K, et al. Power-Efficient Gray-Scale Control of Silicon Thermo-Optic Phase Shifters by Pulse Width Modulation using Monolithically Integrated MOSFET[C]//Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA:IEEE, 2015:1-3.

[98] Matsuura H, Kawashima H, Ikeda K, et al. Accelerating Switching Speed of Thermo-optic MZI Silicon-Photonic Switches with "Turbo Pulse" in PWM Control[C]//Optical Fiber Communications Conference and Exhibition.Los Angeles, CA, USA:IEEE,2017:W4E.3.

[99] Ciccarella P, Carminati M, Ferrari G, et al. Impedance-Sensing CMOS Chip for Noninvasive Light Detection in Integrated Photonics[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2016, 63(10):929-933.

[100] Goodwill D J. Technology for Ultra-Large Silicon Photonic Optical Switches[C]// Optical Fiber Communications Conference and Exhibition. Los Angeles, CA,USA:IEEE, 2017:M2B.2.

周林杰, 陆梁军, 郭展志, 赵硕义, 李祖湘, 高伟, 李鑫, 陈建平. 集成光开关发展现状及关键技术(特邀)[J]. 光通信研究, 2019, 45(1): 9. ZHOU Lin-jie, LU Liang-jun, GUO Zhan-zhi, ZHAO Shuo-yi, LI Zu-xiang, GAO Wei, LI Xin, CHEN Jian-ping. Development Status and Key Technologies of Integrated Optical Switches[J]. Study On Optical Communications, 2019, 45(1): 9.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!