光通信研究, 2019 (1): 9, 网络出版: 2019-05-04   

集成光开关发展现状及关键技术(特邀)

Development Status and Key Technologies of Integrated Optical Switches
作者单位
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
摘要
随着网络传输数据流量的爆炸性增长, 传统电交换由于其有限的带宽和高功耗将很难满足网络带宽发展需求。光交换能直接在光域上完成光信道间信息的交换, 具有高速、宽带、透明、低功耗以及潜在的低成本等诸多优点, 能满足下一代全光交换网络、数据中心和高性能计算机光互连网络建设的迫切需求。文章介绍了集成光开关的发展现状及核心技术, 包括采用氧化硅、III-V族半导体材料和硅材料来制作光开关的进展以及各种技术的特点。其中硅基集成光开关具有结构紧凑、功耗小、成本低以及与互补型金属-氧化物-半导体(CMOS)工艺兼容的优势, 适合大规模光开关制作和量产, 具有潜在的巨大市场商用价值。文章重点介绍了实现硅基光开关的核心单元器件以及几种代表性光开关阵列, 并对光开关状态监控和调节以及光电封装做了阐述。
Abstract
With the explosive growth of data traffic in communication networks, traditional electrical switches will be difficult to satisfy the requirement of broadband network development due to their limited bandwidth and high-power consumption. With optical switches, data can be directly exchanged in the optical domain without conversion. All-optical switching has many advantages such as high speed, wide bandwidth, transparency, low power consumption and low cost. It can be applied in the next generation all-optical switching networks, data center and high-performance computer interconnect networks. This paper introduces the development status and core technologies of integrated optical switches, including the implementation of optical switches using silicon dioxide, III-V semiconductor materials and silicon materials. Among them, the silicon based integrated optical switches have the advantages of compact size, low power consumption, and compatibility with Complementary Metal-Oxide-Semiconductor (CMOS) technologies, which are suitable for massive low-cost production that can potentially find rich market applications. This paper focuses on the implementation of the elementary devices for silicon based optical switches and several representative optical switch fabrics. The methods for the switch state monitoring and switch chip package are also covered.
参考文献

[1] Cisco Systems, Inc. Cisco Visual Networking Index [EB/OL]. (2017-03-28)[2018-10-15]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.

[2] Sato K.Realization and Application of Large-Scale Fast Optical Circuit Switch for Data Center Networking[J].Journal of Lightwave Technology,2018,36(7):1411-1419.

[3] Ganbold M E, Nagai H, Mori Y, et al. A Large-Scale Optical Circuit Switch Using Fast Wavelength-Tunable and Bandwidth-Variable Filters[J]. IEEE Photonics Technology Letters, 2018,30(16): 1439-1442.

[4] Dobbelaere P D, Falta K, Gloeckner S, et al. Digital MEMS for Optical Switching[J]. IEEE Communications Magazine, 2002, 40(3):88-95.

[5] Mizukami M, Yamaguchi J, Nemoto N, et al. 128× 128 Three-Dimensional MEMS Optical Switch Module with Simultaneous Optical Path Connection for Optical Cross-Connect Systems[J]. Applied Optics, 2011,50(21): 4037-4041.

[6] Kim J, Nuzman C J, Kumar B, et al. 1100× 1100 Port MEMS-based Optical Crossconnect with 4-dB Maximum Loss[J]. IEEE Photonics Technology Letters, 2003, 15(11):1537-1539.

[7] Duthie P J, Wale M J. 16*16 Single Chip Optical Switch Array in Lithium Niobate[J].Electronics Letters, 1991, 27(14): 1265-1266.

[8] Watson J E, Milbrodt M A, Bahadori K, et al. A Low-Voltage 8*8 Ti:LiNbO/sub 3/ Switch with a Dilated-Benes Architecture[J]. Journal of Lightwave Technology, 1990, 8(5):794-801.

[9] Sun Y, Cao Y, Wang Q, et al. Polymer Thermal Optical Switch for a Flexible Photonic Circuit[J]. Applied Optics, 2018, 57(1):14-17.

[10] Liang L, Zhang K, Zheng C T, et al. N×N Reconfigurable Nonblocking Polymer/Silica Hybrid Planar Optical Switch Matrix based on Total-Internal-Reflection Effect[J].IEEE Photonics Journal, 2017,9(4):1-11.

[11] Hibino Y, Hanawa F, Nakagome H, et al.High Reliability Optical Splitters Composed of Silica-based Planar Lightwave Circuits[J].Journal of Lightwave Technology, 1995,13(8): 1728-1735.

[12] Watanabe T, Goh T, Okuno M, et al. Silica-based PLC 1×128 Thermo-Optic Switch[C]// European Conference on Optical Communication. Amsterdam,Holland:IEEE, 2001,2:134-135.

[13] Miya T. Silica-based Planar Lightwave Circuits: Passive and Thermally Active Devices[J].IEEE Journal of Selected Topics in Quantum Electronics, 2000,6(1): 38-45.

[14] Goh T, Yasu N, Hattori K, et al.Low-Loss and High-Extinction-Ratio Silica-based Strictly Nonblocking 16×16 Thermooptic Matrix Switch[J].IEEE Photonics Technology Letters, 1998, 10(6): 810-812.

[15] Sakamakia Y, Sohma S, Saida T, et al. Loss Reduction of Silica-based 8× 8 Optical Matrix Switch by Optimizing Waveguide Crossings using WFM Method[J]. Ieice Electronics Express, 2007, 4(23): 712-716.

[16] Sohma S, Watanabe T, Ooba N, et al. Silica-based PLC Type 32 × 32 Optical Matrix Switch[C]//European Conference on Optical Communications. Cannes, France: IEEE, 2006:1-2.

[17] Shibata T, Okuno M, Goh T, et al. Silica-based Waveguide-type 16 × 16 Optical Switch Module Incorporating Driving Circuits[J]. IEEE Photonics Technology Letters, 2003, 15(9):1300-1302.

[18] Sohma S, Goh T, Okazaki H, et al. Low Switching Power Silica-based Super High Delta Thermo-Optic Switch with Heat Insulating Grooves[J]. Electronics Letters, 2002, 38(3):127-128.

[19] Goh T, Yasu M, Kattori K, et al. Low Loss and High Extinction Ratio Strictly Nonblocking 16× 16 Thermooptic Matrix Switch on 6-in Wafer Using Silica-based Planar Lightwave Circuit Technology[J].Journal of Lightwave Technology, 2001,19(3): 371-379.

[20] Sohma S, Mino S, Watanabe T, et al. Solid-State Optical Switches Using Planar Lightwave Circuit and IC-on-PLC Technologies[C]// Asia-Pacific Optical Communications 2004. Beijing, China: Optical Transmission, Switching, and Subsystem II, Pts 1 and 2, 2004,5625 :767-775.

[21] Takahashi M, Uchida Y, Yamasaki S, et al. Compact and Low-Loss Coherent Mixer based on High Delta ZrO2-SiO2 PLC[J].Journal of Lightwave Technology, 2014,32(17): 3081-3088.

[22] Uchida Y, Yamasaki S, Takahashi M, et al. Ultra-Compact 8-Arrayed 8× 1 Switch Consists of ZrO2-SiO2-based High Delta PLC[C]//Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA:IEEE, 2015: W2A.11.

[23] Takahashi M, Yamasaki S, Hasegawa J. Switching Devices and Systems Enabled by Advanced Planar Lightwave Circuits[C]//Optical Fiber Communications Conference and Exhibition. San Diego,CA,USA: IEEE, 2017:WAE.6.

[24] Takahashi M, Yamasaki S, Uchida Y. et al. Compact and Low-Loss ZrO2-SiO2 PLC-based 8× 8 Multicast Switch for CDC-ROADM Application[J]. Journal of Lightwave Technology, 2016,34(8): 1712-1716.

[25] Ding M, Wonfor A, Cheng Q, et al. Hybrid MZI-SOA InGaAs/InP Photonic Integrated Switches[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, pp(99):1.

[26] Stabile R, Alboresmejia A, Rohit A, et al. Integrated Optical Switch Matrices for Packet Data Networks[J]. Microsystems & Nanoengineering, 2016, 2:15042.

[27] Cheng Q X, Wonfor A, Wei J L, et al. Demonstration of the Feasibility of Large-Port-Count Optical Switching Using a Hybrid Mach-Zehnder Interferometer-Semiconductor Optical Amplifier Switch Module in a Recirculating Loop[J].Optics Letters,2014,39(18):5244-5247.

[28] Cheng Q X, Wonfor A, Penty R V, et al.Low-Energy Hybrid Photonic Space Switch[J]. Journal of Lightwave Technology, 2013,31(18): 3077-3084.

[29] Stabile R, Albores-Mejia A, Williams K A. Monolithic Active-Passive 16× 16 Optoelectronic Switch[J].Optics Letters, 2012,37(22): 4666-4668.

[30] Wonfor A,Wang H,Penty R V,et al.White,Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited][J]. Journal of Optical Communications and Networking,2011,3(8):A32-A39.

[31] Stabile R, Dasmahapatra P, Williams K A. 4×4 InP Switch Matrix with Electro-Optically Actuated Higher Order Micro-Ring Resonators[J].IEEE Photonics Technology Letters, 2016,28(24): 2874-2877.

[32] Nicholes S C, Masanovic M L, Jevremovic B, et al.An 8×8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip[J].Journal of Lightwave Technology, 2010,28(4): 641-650.

[33] Zhou L, Wang X, Lu L, et al. Integrated Optical Delay Lines: A Review and Perspective [Invited][J]. Chinese Optics Letters, 2018,16(10): 101301.

[34] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose Silicon Photonics Signal Processor Core[J]. Nature Communications, 2017, 8(1):636.

[35] Burla M, Wang X, Li M, et al. Wideband Dynamic Microwave Frequency Identification System Using a Low-Power Ultracompact Silicon Photonic Chip[J]. Nature Communications, 2016, 7(1):13004.

[36] Rickman A. The Commercialization of Silicon Photonics[J].Nature Photonics, 2014,8(8): 579-582.

[37] Sherwood D N,Wang H,Chen L,et al.Optical 4×4 Hitless Silicon Router for Optical Networks-on-Chip (NoC)[J].Optics Express,2008,16(20):15915-15922.

[38] Nikolova D, Calhoun D M, Liu Y, et al. A Highly Scalable Fully Non-Blocking Silicon Photonic Switch Fabric[J]. arXiv Optics,2005(12):1512.09323.

[39] Gazman A, Browning C, Bahadori M, et al. Software-Defined Control-Plane for Wavelength Selective Unicast and Multicast of Optical Data in a Silicon Photonic Platform[J]. Optics Express, 2017, 25(1):232-242.

[40] Vujicic V, Anthur A P, Gazman A, et al. Software-Defined Silicon Photonics based Metro Node for Flexible Superchannel Switching[J]. IEEE/OSA Journal of Optical Communications & Networking, 2016, 9(5):342-350.

[41] Lee B G,Rylyakov A V,Green W M J,et al.Monolithic Silicon Integration of Scaled Photonic Switch Fabrics,CMOS Logic,and Device Driver Circuits[J].Journal of Lightwave Technology,2014,32(4):743-751.

[42] Rylyakov A V, Lee B G, Baks C W, et al. Design and Fabrication of Low-Insertion-Loss and Low-Crosstalk Broadband 2×2 Mach-Zehnder Silicon Photonic Switches[J].Journal of Lightwave Technology,2015,33(17):3597-3606.

[43] Dupuis N, Lee B G, Rylyakov A V, et al. Modeling and Characterization of a Nonblocking 4×4 Mach-Zehnder Silicon Photonic Switch Fabric[J]. Journal of Lightwave Technology, 2015, 33(20):4329-4337.

[44] Han S, Seok T J , Quack N, et al.Large-Scale Silicon Photonic Switches with Movable Directional Couplers[J].Optica, 2015,2(4): 370-375.

[45] Seok T J, Quack N, Han S, et al.Large-Scale Broadband Digital Silicon Photonic Switches with Vertical Adiabatic Couplers[J]. Optica, 2016,3(1): 64-70.

[46] Suzuki K, Tanizawa K, Matsukawa T, et al. Ultra-Compact 8×8 Strictly-Non-Blocking Si-Wire PILOSS Switch[J]. Optics Express, 2014, 22(4):3887-3894.

[47] Tanizawa K, Suzuki K, Toyama M, et al. Ultra-Compact 32 × 32 Strictly-Non-Blocking Si-Wire Optical Switch with Fan-Out LGA Interposer[J]. Optics Express, 2015, 23(13):17599.

[48] Qiao L, Tang W, Chu T. Non-Blocking 8×8 Silicon Electro-Optic Switch[C]// Lasers and Electro-Optics Pacific Rim. Busan, South Korea: IEEE, 2015:1-2.

[49] Qiao L, Tang W, Chu T. 16×16 Non-Blocking Silicon Electro-Optic Switch based on Mach-Zehnder Interferometers[C]// Optical Fiber Communications Conference and Exhibition, Anaheim. CA, USA: IEEE, 2016:Th1C.2.

[50] Qiao L, Tang W J, Chu T. 32× 32 Silicon Electro-Optic Switch with Built-in Monitors and Balanced-Status Units[J]. Scientific Reports, 2017, 7:42306.

[51] Ji R, Xu J, Yang L. Five-Port Optical Router based on Microring Switches for Photonic Networks-on-Chip[J].IEEE Photonics Technology Letters, 2013, 25(5): 492-495.

[52] Ji R. Five-Port Optical Router for Photonic Networks-on-Chip[J]. Optics Express, 2011,19(21): 20258-20268.

[53] Xia Y, Yang L, Zhang F, et al. Reconfigurable Non-Blocking 4-Port Silicon Thermo-Optic Optical Router based on Mach-Zehnder Optical Switches[J].Optics Letters, 2015,40(7):1402-1405.

[54] Yang L,Jia H,Zhao Y,et al.Reconfigurable Non-Blocking Four-Port Optical Router based on Microring Resonators[J].Optics Letters,2015,40(6):1129-1132.

[55] Guo Z, Lu L, Zhou L, et al. 16×16 Silicon Optical Switch based on Dual-Ring Assisted Mach-Zehnder Interferometers[J]. Journal of Lightwave Technology, 2018, 36(99):225-232.

[56] Liao M, Wu B, Huang W, et al. Synchronous Driving Scheme for Silicon-based Optical Switches to Critically Compensate for Thermo-Optic Effect in Carrier Injection[J]. Applied Optics, 2017, 56(2):205-210.

[57] Zhao S, Lu L, Zhou L, et al. 16 × 16 Silicon Mach-Zehnder Interferometer Switch Actuated with Waveguide Microheaters[J].Photonics Research,2016,4(5):202-207.

[58] Lu L, Zhao S, Zhou L, et al. 16 ×16 Non-Blocking Silicon Optical Switch based on Electro-Optic Mach-Zehnder Interferometers[J].Optics Express,2016,24(9):9295-9307.

[59] Li Z, Zhou L, Lu L, et al. 4×4 Nonblocking Optical Switch Fabric based on Cascaded Multimode Interferometers[J]. Photonics Research, 2016,4(1): 21-26.

[60] Zhou L, Soref R, Chen J. Wavelength-Selective Switching Using Double-Ring Resonators Coupled by a Three-Waveguide Directional Coupler[J]. Optics Express, 2015, 23(10):13488-13498.

[61] Lu L, Zhou L, Li Z, et al. Broadband 4×4 Nonblocking Silicon Electrooptic Switches based on Mach-Zehnder Interferometers[J]. IEEE Photonics Journal, 2015, 7(1):1-8.

[62] Lu L J, Zhou L J, Li Z X, et al. 4×4 Silicon Optical Switch based on Double-Ring Assisted Mach-Zehnder Interferometers[J].IEEE Photonics Technology Letters 2015,27(23): 2457-2460.

[63] Lu L, Zhou L, Li S, et al. 4 × 4 Nonblocking Silicon Thermo-Optic Switches based on Multimode Interferometers[J]. Journal of Lightwave Technology, 2015, 33(4):857-864.

[64] Lu L, Zhou L,Li X W, et al. Low-Power 2×2 Silicon Electro-Optic Switches based on Double-Ring Assisted Mach-Zehnder Interferometers[J]. Optics Letters, 2014, 39(6):1633-1636.

[65] Liao M, Wu B, Huang W, et al. Synchronous Driving Scheme for Silicon-based Optical Switches to Critically Compensate for Thermo-Optic Effect in Carrier Injection[J]. Applied Optics, 2017, 56(2):205-210.

[66] Li Y, Poon A W. Actively Stabilized Silicon Microrings with Integrated Surface-State-Absorption Photodetectors Using a Slope-Detection Method[J]. Optics Express, 2016, 24(19):21286-21300.

[67] Padmaraju K, Logan D F, Shiraishi T, et al. Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals[J]. Journal of Lightwave Technology, 2014, 32(3):505-512.

[68] Li D, Zhou L, Lu L, et al. Optical Power Monitoring with Ultrahigh Sensitivity in Silicon Waveguides and Ring Resonators[J].IEEE Photonics Journal,2017,9(5):1-10.

[69] Celo D, Goodwill D J, Jiang J, et al. 32×32 Silicon Photonic Switch[C]//Optoelectronics and Communications Conference. Niigata, Japan:IEEE,2016:1-3.

[70] Li G, Yao J, Thacker H, et al. Ultralow-Loss, High-Density SOI Optical Waveguide Routing for Macrochip Interconnects[J]. Optics Express, 2012, 20(11): 12035-12039.

[71] Zou Z, Zhou L, Li X, et al. 60-nm-Thick Basic Photonic Components and Bragg Gratings on the Silicon-on-Insulator Platform[J].Optics Express,2015,23(16):20784-20795.

[72] Krishnamoorthy A V, Kung C C, Feng D Z, et al. Low Loss Shallow-Ridge Silicon Waveguides[J]. Optics Express, 2010, 18(14):14474-14479.

[73] Van C J, Green W M, Assefa S,et al. Low-Power,2×2 Silicon Electro-Optic Switch with 110-nm Bandwidth for Broadband Reconfigurable Optical Networks[J]. Optics Express, 2009, 17(26):24020-24029.

[74] Dupuis N, Rylyakov A V, Schow C L, et al. Ultralow Crosstalk Nanosecond-Scale Nested 2 × 2 Mach-Zehnder Silicon Photonic Switch[J]. Optics Letters, 2016, 41(13):3002-3005.

[75] Suzuki K,Cong G,Tanizawa K,et al.Ultra-High Extinction-Ratio 2×2 Silicon Optical Switch with Variable Splitter[J].Optics Express,2015,23(7):9086-9092.

[76] Goh T, Himeno A, Okuno M, et al. High-Extinction Ratio and Low-Loss Silica-based 8×8 Strictly Nonblocking Thermooptic Matrix Switch[J]. Journal of Lightwave Technology,1999,17(7): 1192-1199.

[77] Suzuki K, Tanizawa K, Suda S, et al. Broadband Silicon Photonics 8 × 8 Switch based on Double-Mach-Zehnder Element Switches[J].Optics Express,2017,25(7):7538-7546.

[78] Zhou L, Zhu H, Zhang H, et al. Photoconductive Effect on P-I-P Micro-Heaters Integrated in Silicon Microring Resonators[J]. Optics Express, 2014, 22(2):2141-2149.

[79] Xie J,Zhou L,Zou Z,et al.Continuously Tunable Reflective-Type Optical Delay Lines Using Microring Resonators[J].Optics Express,2014,22(1):817-823.

[80] Zhou L, Zhang X, Lu L, et al. Tunable Vernier Microring Optical Filters with P-I-P Type Microheaters[J]. IEEE Photonics Journal, 2013, 5(4):6601211.

[81] Spanke R. Architectures for Guided-Wave Optical Space Switching Systems[J]. IEEE Communications Magazine, 1987, 25(5):42-48.

[82] Padmanabhan K, Netravali A. Dilated Networks for Photonic Switching[J]. IEEE Transactions on Communications, 1987, 35(12):1357-1365.

[83] Lu E, Zheng S Q. Fast Reconfiguration Algorithms for Time, Space, and Wavelength Dilated Optical Benes Networks[J]. Parallel Algorithms & Applications, 2007, 22(1):39-58.

[84] Guo Z, Lu L, Zhao S, et al. Strictly Non-Blocking 4×4 Silicon Electro-Optic Switch based on A Double Layer Network Architecture[C]// International Conference on Group IV Photonics. Shanghai, China: IEEE, 2016:68-69.

[85] Nakamura S, Takahashi S, Ogura I, et al. High Extinction Ratio Optical Switching Independently of Temperature with Silicon Photonic 1×8 Switch[C]// Optical Fiber Communication Conference and Exposition. Los Angeles, CA,USA: IEEE, 2012:955-967.

[86] Sugiyama K, Chiba T, Tanizawa K, et al. Polarization Diversity Circuit based on Silica Waveguides and Photonic Crystal Waveplates for A 4×4 Silicon Optical Switch[J]. Ieice Electronics Express, 2017, 14(10):14.

[87] Tanizawa K, Suzuki K, Ikeda K, et al. Novel Polarization Diversity without Switch Duplication of A Si-Wire PILOSS Optical Switch[J].Optics Express,2016,24(7):6861-6868.

[88] Sacher W D, Barwicz T, Taylor B J F, et al. Polarization Rotator-Splitters in Standard Active Silicon Photonics Platforms[J]. Optics Express, 2014, 22(4):3777-3786.

[89] Annoni A, Guglielmi E, Carminati M, et al. Automated Routing and Control of Silicon Photonic Switch Fabrics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6):1-8.

[90] Grillanda S, Morichetti F, Peserico N, et al. Non-Invasive Monitoring of Mode-Division Multiplexed Channels on a Silicon Photonic Chip[J]. Journal of Lightwave Technology, 2015, 33(6):1197-1201.

[91] Snyder B, O'Brien P. Packaging Process for Grating-Coupled Silicon Photonic Waveguides Using Angle-Polished Fibers[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2013, 3(6):954-959.

[92] Li C, Chee K S, Tao J, et al. Silicon Photonics Packaging with Lateral Fiber Coupling to Apodized Grating Coupler Embedded Circuit[J]. Optics Express, 2014, 22(20):24235-24240.

[93] Pavarelli N, Lee J S, O'Brien P A. Packaging Challenges for Integrated Silicon Photonic Circuits[C]//SPIE Photonics Europe.Montreal, Canada:IEEE, 2014,9133(7):1187-1190.

[94] Dan N, Luo J, Henriksson J, et al. High Density Optical Packaging of High Radix Silicon Photonic Switches[C]// Optical Fiber Communications Conference and Exhibition. Anaheim, CA,USA:IEEE, 2017:Th5D.7.

[95] Suzuki K, Konoike R, Hasegawa J, et al. Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch with Extremely High-Δ Silica PLC Connector[J].Journal of Lightwave Technology,2018,36(16):1.

[96] Suzuki K,Konoike R,Hasegawa J,et al.Low Insertion Loss and Power Efficient 32× 32 Silicon Photonics Switch with Extremely-High-Delta PLC Connector[C]//Optical Fiber Communications Conference and Exposition.San Diego,CA,USA:IEEE,2018:Th4B.5.

[97] Cong G W, Matsukawa T, Suzuki K, et al. Power-Efficient Gray-Scale Control of Silicon Thermo-Optic Phase Shifters by Pulse Width Modulation using Monolithically Integrated MOSFET[C]//Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA:IEEE, 2015:1-3.

[98] Matsuura H, Kawashima H, Ikeda K, et al. Accelerating Switching Speed of Thermo-optic MZI Silicon-Photonic Switches with "Turbo Pulse" in PWM Control[C]//Optical Fiber Communications Conference and Exhibition.Los Angeles, CA, USA:IEEE,2017:W4E.3.

[99] Ciccarella P, Carminati M, Ferrari G, et al. Impedance-Sensing CMOS Chip for Noninvasive Light Detection in Integrated Photonics[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2016, 63(10):929-933.

[100] Goodwill D J. Technology for Ultra-Large Silicon Photonic Optical Switches[C]// Optical Fiber Communications Conference and Exhibition. Los Angeles, CA,USA:IEEE, 2017:M2B.2.

周林杰, 陆梁军, 郭展志, 赵硕义, 李祖湘, 高伟, 李鑫, 陈建平. 集成光开关发展现状及关键技术(特邀)[J]. 光通信研究, 2019, 45(1): 9. ZHOU Lin-jie, LU Liang-jun, GUO Zhan-zhi, ZHAO Shuo-yi, LI Zu-xiang, GAO Wei, LI Xin, CHEN Jian-ping. Development Status and Key Technologies of Integrated Optical Switches[J]. Study On Optical Communications, 2019, 45(1): 9.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!