光学学报, 2017, 37 (7): 0701001, 网络出版: 2017-07-10   

基于MAX-DOAS观测大气Ring效应的气溶胶光学参数反演

Retrieval of Aerosol Optical Parameters Based on Ring Effect Observed by MAX-DOAS
作者单位
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
3 中国科学院城市环境研究所中国科学院城市大气环境研究卓越创新中心, 福建 厦门 361021
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230031
5 马普化学研究所, 美因茨 D-55128, 德国
摘要
Ring效应是指大气分子对太阳光的转动拉曼散射致使太阳光中夫琅禾费线变浅的现象。气溶胶能够改变光子在大气中的路径和大气散射性质,最终影响夫琅禾费线的填充程度,因此可以通过观测Ring效应强度获取气溶胶信息。分析了Ring效应对气溶胶光学参量(气溶胶光学厚度、单次散射反照率、非对称因子等)的敏感性,发展了一种结合大气辐射传输模型并利用地基多轴差分吸收光谱(MAX-DOAS)仪器观测的Ring效应获取气溶胶光学特性的新方法。将MAX-DOAS 反演结果和太阳光度计的观测结果进行了对比,两者一致性较好。研究表明,基于地基MAX-DOAS观测的Ring 效应可以实现气溶胶光学特性的探测。
Abstract
Ring effect is defined as the phenomenon that the depth of solar Fraunhofer lines shallows caused by solar rotational Raman scattering of sunlight. Aerosol can change the atmospheric light paths of photons and atmospheric scattering properties, and then influence the filling-in of Fraunhofer lines, so we can retrieve the aerosol information from the intensity of Ring effect. Sensitivity of the Ring effect to optical parameters of aerosol is analyzed, including aerosol optical depth, single scattering albedo and asymmetry factor. A new method for determining aerosol optical properties by ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observation and the atmospheric radiative transfer model is developed. The MAX-DOAS retrieval result is in good agreement with the measurement result from sun photometer. The study shows that the Ring effect observed by ground-based MAX-DOAS can be used to detect the aerosol properties.
参考文献

[1] Rosenfeld D. Aerosols, clouds, and climate[J]. Science, 2006, 312(5778): 1323-1324.

[2] Finlayson-Pitts B J, Pitts J N. Chemistry of the upper and lower atmosphere: Theory, experiments, and applications[M]. San Diego: Academic Press, 1999.

[3] Huebert B J, Bates T, Russell P B, et al. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosol and their climatic impacts[J]. Journal of Geophysical Research, 2003, 108(D23): 8633.

[4] Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124.

[5] 吴丰成. 基于车载差分吸收光谱技术的城市大气污染物探测研究[D]. 合肥: 中国科学院安徽光学精密机械研究所, 2013.

    Wu Fengcheng. Observations of distribution and emission for air pollution in urban area by mobile differential optical absorption spectroscopy[D]. Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2013.

[6] 李 菲, 邓雪娇, 谭浩波. 微量振荡天平法与激光散射单粒子法在气溶胶观测中的对比试验研究[J]. 热带气象学报, 2015, 31(4): 497-504.

    Li Fei, Deng Xuejiao, Tan Haobo. Comparative study of tapered element oscillating microbalance technology and principle of single particle laser scattering used in measuring aerosol loading[J]. Journal of Tropical Meteorology, 2015, 31(4): 497-504.

[7] Dubovik O, Holben B, Eck T F. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences, 2002, 59(3): 590-608.

[8] Ancellet G, Francois R. Compact airborne lidar for tropospheric ozone: Description and field measurements[J]. Applied Optics, 1998, 37(24): 5509-5521.

[9] Wagner T, Dix B, Friedeburg C V. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols - Principles and information content[J]. Journal of Geophysical Research, 2004, 109(D22): D22205.

[10] Wagner T, Beirle S, Deutschmann T. Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models[J]. Atmospheric Measurement Techniques, 2009, 2(1): 113-124.

[11] Wagner T, Deutschmann T, Platt U. Determination of aerosol properties from MAX-DOAS observations of the Ring effect[J]. Atmospheric Measurement Techniques, 2009, 2(2): 495-512.

[12] Ortega I, Coburn S. The CU 2-D-MAX-DOAS instrument - Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties[J]. Atmospheric Measurement Techniques, 2016, 9(8): 3893-3910.

[13] 裴 显, 李 昂, 谢品华. 基于Monte Carlo大气辐射传输模型的Ring效应模拟[J]. 大气与环境光学学报, 2013, 8(5): 354-363.

    Pei Xian, Li Ang, Xie Pinhua. Ring effect simulation based on Monte Carlo atmospheric radiative transfer model[J]. Journal of atmospheric and Environment Optics, 2013, 8(5): 354-363.

[14] Wang Y, Li A, Xie P H. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1663-1680.

[15] 吴丰成, 谢品华, 李 昂, 等. 基于多轴差分吸收光谱技术的查找表法反演气溶胶消光廓线研究[J]. 光学学报, 2013, 33(6): 0601002.

    Wu Fengcheng, Xie Pinhua, Li Ang, et al. Research of aerosol extinction inverted with look-up table method based on muti-axis differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2013, 33(6): 0601002.

[16] 牟福生, 谢品华, 李 昂, 等. 基于MAX-DOAS观测大气Ring效应的气溶胶消光廓线反演[J]. 光学学报, 2015, 35(11): 1101001.

    Mou Fusheng, Xie Pinhua, Li Ang, et al. Retrieval of aerosol profile based on the Ring effect observed by MAX-DOAS[J]. Acta Optica Sinica, 2015, 35(11): 1101001.

[17] Fayt C, van Roozendael M. WinDOAS 2.1 software user manual[A/OL].[2016-06-03]. http: ∥www.oma.be/BIRA-IASB/Molecules/BrO/WinDOAS-SUM-210b.pdf.

[18] Vandaele A C, Hermans C. Measurements of the NO2 absorption cross-sections from 42000 cm-1 to 10000 cm-1 (238-1000 nm) at 220 K and 294 K[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59(3/5): 171-184.

[19] Bogumil K, Orphal J, Homann T. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230-2380 nm region[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(2/3): 167-184.

[20] Meller R, Moortgat G K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm[J]. Journal of Geophysical Research Atmospheres, 2000, 105(D6): 7089-7101.

牟福生, 李昂, 吴丰成, 谢品华, 王杨, 陈浩, 徐晋, 李素文. 基于MAX-DOAS观测大气Ring效应的气溶胶光学参数反演[J]. 光学学报, 2017, 37(7): 0701001. Mou Fusheng, Li Ang, Wu Fengcheng, Xie Pinhua, Wang Yang, Chen Hao, Xu Jin, Li Suwen. Retrieval of Aerosol Optical Parameters Based on Ring Effect Observed by MAX-DOAS[J]. Acta Optica Sinica, 2017, 37(7): 0701001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!